1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
3 years ago
6

Work-producing devices that operate on reversible processes deliver the most work, and work-consuming devices that operate on re

versible processes consume the least work. a)- True b)- False
Engineering
1 answer:
Margarita [4]3 years ago
4 0

Answer: True

Explanation:

Yes, it is true that work producing device that can operate on reversible process deliver the most work as, the process must be quasi equilibrium to be reversible and work consuming device that operate on reversible process consume the least work as, energy released by the reversible process can do maximum amount of work as, less energy lost as heat and energy loss is very less in reversible energy and less work require to operate as consuming device.

You might be interested in
A satellite orbits the Earth every 2 hours at an average distance from the Earth's centre of 8000km. (i) What is the average ang
AlexFokin [52]

Answer:

i)ω=3600 rad/s

ii)V=7059.44 m/s

iii)F=1245.8 N

Explanation:

i)

We know that angular speed given as

\omega =\dfrac{d\theta}{dt}

We know that for one revolution

θ=2π

Given that time t= 2 hr

So

ω=θ/t

ω=2π/2 = π rad/hr

ω=3600 rad/s

ii)

Average speed V

V=\sqrt{\dfrac{GM}{R}}

Where M is the mass of earth.

R is the distance

G is the constant.

Now by putting the values

V=\sqrt{\dfrac{GM}{R}}

V=\sqrt{\dfrac{6.667\times 10^{-11}\times 5.98\times 10^{24}}{8000\times 10^3}}

V=7059.44 m/s

iii)

We know that centripetal fore given as

F=\dfrac{mV^2}{R}

Here given that m= 200 kg

R= 8000 km

so now by putting the values

F=\dfrac{mV^2}{R}

F=\dfrac{200\times 7059.44^2}{8000\times 10^3}

F=1245.8 N

3 0
3 years ago
A heat engine receives heat from a heat source at 1453 C and has a thermal efficiency of 43 percent. The heat engine does maximu
xxMikexx [17]

Answer:

a) 1253 kJ

b) 714 kJ

c) 946 C

Explanation:

The thermal efficiency is given by this equation

η = L/Q1

Where

η: thermal efficiency

L: useful work

Q1: heat taken from the heat source

Rearranging:

Q1 = L/η

Replacing

Q1 = 539 / 0.43 = 1253 kJ

The first law of thermodynamics states that:

Q = L + ΔU

For a machine working in cycles ΔU is zero between homologous parts of the cycle.

Also we must remember that we count heat entering the system as positiv and heat leaving as negative.

We split the heat on the part that enters and the part that leaves.

Q1 + Q2 = L + 0

Q2 = L - Q1

Q2 = 539 - 1253 = -714 kJ

TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:

η = 1 - T2/T1

T2/T1 = 1 - η

T2 = (1 - η) * T1

The temperatures must be given in absolute scale (1453 C = 1180 K)

T2 = (1 - 0.43) * 1180 = 673 K

673 K = 946 C

8 0
3 years ago
A river has an average rate of water flow of 59.6 M3/s. This river has three tributaries, tributary A, B and C, which account fo
Fiesta28 [93]

Answer:

50421.6 m³

Explanation:

The river has an average rate of water flow of 59.6 m³/s.

Tributary B accounts for 47% of the rate of water flow. Therefore the rate of water flow through tributary B is:

Flow rate of water through tributary B = 47% of 59.6 m³/s = 0.47 * 59.6 m³/s = 28.012 m³/s

The volume of water that has been discharged through tributary B = Flow rate of water through tributary B * time taken

time = 30 minutes = 30 minutes * 60 seconds / minute = 1800 seconds

The volume of water that has been discharged through tributary B in 30 seconds = 28.012 m³/s * 1800 seconds = 50421.6 m³

3 0
3 years ago
Answer ppeeeeeaaaalll
Bad White [126]

Answer:

what

Explanation:

is this an exam or an test or what is it

3 0
3 years ago
16 . You are turning onto a two-lane road divided by a broken yellow line. You know immediately that:
Over [174]

When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.

<h3>What is the road about?</h3>

Note that a Yellow centerlines can be seen in roads and it is one that is often used to separate traffic moving in different directions.

Note also that Broken lines can be crossed to allow slower-moving traffic and as such, When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.

See full question below

You are turning onto a two-lane road divided by a broken yellow line. You know immediately that:

Answers

You are on a two-way road.

You are on a one-way road.

The road is under repair.

You must stay to the left of the broken yellow lines.

Learn more about  two-way road from

brainly.com/question/13123201

#SPJ2

5 0
2 years ago
Other questions:
  • Suppose that the president of a small island nation has decided to increase government spending by constructing three beach reso
    11·1 answer
  • A well penetrates an unconfined aquifer. Prior to pumping, the water level (head) is 25 meters. After a long period of pumping a
    14·1 answer
  • A compound machine contains three simple machines with IMAs of 2, 4 and 5, respectively. What is the overall ideal mechanical ad
    15·1 answer
  • A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produc
    11·1 answer
  • What did Congress do in 1787 to settle land disputes among the settlers?
    11·1 answer
  • Determine the reactor volume (assume a CSTR activated sludge aerobic reactor at steady state) required to treat 5 MGD of domesti
    5·1 answer
  • Visual aids are useful for all of the following reasons except
    11·1 answer
  • Policeman says, "Son, you can't stay here"
    9·1 answer
  • In what ways did electrical switches have to change to progress from the
    13·1 answer
  • Technician a s ays a shorted circuit can generate excessive heat. technician b says a shorted circuit will cause the circuit pro
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!