s 0Miles (short), 150 Miles(medium), and 300 Miles (long).
Explanation:
The number of hours that will be needed to charge a 600mah battery will be 1.5 hours.
<h3>
What is a battery?</h3>
It should be noted that an electric battery simply means a source of electric power that consist of one or more electrochemical cells that are with external connections that are important for powering electrical devices.
It should be noted that when a battery is supplying power, then the positive terminal is the cathode while the negative terminal is the anode.
In conclusion, the number of hours that will be needed to charge a 600mah battery will be 1.5 hours.
Learn more about battery on:
brainly.com/question/16896465
#SPJ1
Answer:
Time =t2=58.4 h
Explanation:
Since temperature is the same hence using condition
x^2/Dt=constant
where t is the time as temperature so D also remains constant
hence
x^2/t=constant
2.3^2/11=5.3^2/t2
time=t^2=58.4 h
Answer:

Explanation:
Using the expression shown below as:

Where,
is the number of vacancies
N is the number of defective sites
k is Boltzmann's constant = 
is the activation energy
T is the temperature
Given that:

N = 10 moles
1 mole = 
So,
N = 
Temperature = 425°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (425 + 273.15) K = 698.15 K
T = 698.15 K
Applying the values as:

![ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=ln%5B%5Cfrac%20%7B2.3%7D%7B6.023%7D%5Ctimes%2010%5E%7B-11%7D%5D%3D-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)

Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C