You move the decimal point 6 places to the right because the exponent is positive.
5.04 x 10^6 in standard form is 5040000.
Answer:The area of the base will be (1)(3) m
The area of the right and left lateral faces will be (1)(2) = 2m
The area of the front and back lateral faces will be (2)(3) = 6m
The lateral area of the prism will be 16 m
Step-by-step explanation:
Answer:
The reduced row-echelon form of the linear system is ![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&0\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%260%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We will solve the original system of linear equations by performing a sequence of the following elementary row operations on the augmented matrix:
- Interchange two rows
- Multiply one row by a nonzero number
- Add a multiple of one row to a different row
To find the reduced row-echelon form of this augmented matrix
![\left[\begin{array}{cccc}2&3&-1&14\\1&2&1&4\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D2%263%26-1%2614%5C%5C1%262%261%264%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
You need to follow these steps:
- Divide row 1 by 2

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\1&2&1&4\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C1%262%261%264%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 from row 2

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\0&1/2&3/2&-3\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C0%261%2F2%263%2F2%26-3%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 multiplied by 5 from row 3

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\0&1/2&3/2&-3\\0&3/9&9/2&-28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%263%2F9%269%2F2%26-28%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 3 from row 1

![\left[\begin{array}{cccc}1&0&-5&16\\0&1/2&3/2&-3\\0&3/9&9/2&-28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%263%2F9%269%2F2%26-28%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 3 from row 3

![\left[\begin{array}{cccc}1&0&-5&16\\0&1/2&3/2&-3\\0&0&0&-19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%260%260%26-19%5Cend%7Barray%7D%5Cright%5D)
- Multiply row 2 by 2

![\left[\begin{array}{cccc}1&0&-5&16\\0&2&3&-6\\0&0&0&-19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%262%263%26-6%5C%5C0%260%260%26-19%5Cend%7Barray%7D%5Cright%5D)
- Divide row 3 by −19

![\left[\begin{array}{cccc}1&0&-5&16\\0&2&3&-6\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%262%263%26-6%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 3 multiplied by 16 from row 1

![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&-6\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%26-6%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Add row 3 multiplied by 6 to row 2

![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&0\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%260%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
$59.40 was the original price for the shoes
Answer:
45°
Step-by-step explanation:
The hour hand makes a trip of 360° around the face of the clock in 12 hours, so in 4.5 hours will make an angle of ...
... (4.5/12)·360° = 135°
clockwise from straight up.
The minute hand makes that 360° turn in 1 hour, so in 30 minutes, it will be 180° clockwise from straight up.
The difference between the angles of the hands is ...
... 180° -135° = 45°