Based on Le Chatelier's principle, if the equilibrium of a system is disturbed by changing the temperature, pressure or concentration, then it will shift in a direction to undo the effect of the induced change.
The given equilibrium is:
A + B ↔ AB
Removal of the reactant A implies that the concentration of A has decreased, therefore the equilibrium will shift in a direction to produce more of A. Thus, it will shift to the left and the rate of the reverse or backward reaction will increase.
<span>the Brazil Current has the warmest water</span>
The molecular formula for hyponitrous acid is H2N2O2. and for nitroxyl is HNO.
The chemical compound HNO is also known as nitroxyl (common name) or Azanon (IUPAC name). In the gas phase, it is widely recognized. In the solution phase, the short-lived intermediate nitroxyl can develop. Nitric oxide (NO) is reduced to form the conjugate base, NO, which is isoelectronic with dioxygen.
By oxidizing hydroxylamine with CuO , HgO, and Ag 2 and by oxidizing hydroxylamine with N2O3 in methyl-alcoholic solution, we can create hyponitrous acid.
Learn more about chemical compound here -
brainly.com/question/12166462
#SPJ4
2H₂ + O₂ = 2H₂O
n(H₂)=m(H₂)/M(H₂)
n(H₂)=5g/2.0g/mol=2.5 mol
n(O₂)=m(O₂)/M(O₂)
n(O₂)=40g/32.0g/mol=1.25 mol
H₂ : O₂ = 2 : 1
2.5 : 1.25 = 2 : 1
n(H₂O)=n(H₂)=2n(O₂)=2.5 mol
m(H₂O)=n(H₂O)M(H₂O)
m(H₂O)=2.5mol*18.0g/mol=45.0 g
Answer:

Explanation:
![\Delta H_{rxn}^{0}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation and
is standard enthalpy change for reaction at 
So, ![\Delta H_{rxn}=[3mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[4mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{3}H_{8})_{g}]-[5mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B4mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B3%7DH_%7B8%7D%29_%7Bg%7D%5D-%5B5mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[3mol\times -393.509kJ/mol]+[4mol\times -241.818kJ/mol]-[1mol\times -103.8kJ/mol]-[5mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B4mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-103.8kJ%2Fmol%5D-%5B5mol%5Ctimes%200kJ%2Fmol%5D)
or, 