Answer:b.CaCl2
Explanation:
A compound is a substance resulting when two or more elements are are chemically bonded together either ionically or covalently in a fixed ratio.
From the given options we can see that the only compound there is CaCl2 which is an ionic compound in the fixed ratio of one calcium ion to two chloride ions.
Other options , Cu,Na and Nd are merely pure substance---Elements
1. Magnesium atoms also have a slightly smaller radius than sodium atoms, and so the delocalised electrons are closer to the nuclei.
2. Sodium has higher melting point than potassium because of stronger metallic bonding .
3. Potassium are very soft metal can be very easily cut with a knife
4. Increase of resistance in metals. Therefore the mobility of electrons decreases and causes decrease in conductivity.
5.To increase strength, increase corrosion resistance, or reduce costs.
6. All metals have low ionization energies and are relatively electropositive, and so they lose electrons fairly easily.
7. All the group 1 metals are reactive, but they get more reactive as you go down the group, so potassium is more reactive than sodium.
Object one is 5.2 g/cm3
object two is 3.46g/ml
The answer is B. Enzymes.
Enzymes are biological catalysts that help cause reactions in your body.
Answer:
222.30 L
Explanation:
We'll begin by calculating the number of mole in 100 g of ammonia (NH₃). This can be obtained as follow:
Mass of NH₃ = 100 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 100 / 17
Mole of NH₃ = 5.88 moles
Next, we shall determine the number of mole of Hydrogen needed to produce 5.88 moles of NH₃. This can be obtained as follow:
N₂ + 3H₂ —> 2NH₃
From the balanced equation above,
3 moles of H₂ reacted to produce 2 moles NH₃.
Therefore, Xmol of H₂ is required to p 5.88 moles of NH₃ i.e
Xmol of H₂ = (3 × 5.88)/2
Xmol of H₂ = 8.82 moles
Finally, we shall determine the volume (in litre) of Hydrogen needed to produce 100 g (i.e 5.88 moles) of NH₃. This can be obtained as follow:
Pressure (P) = 95 KPa
Temperature (T) = 15 °C = 15 + 273 = 288 K
Number of mole of H₂ (n) = 8.82 moles
Gas constant (R) = 8.314 KPa.L/Kmol
Volume (V) =?
PV = nRT
95 × V = 8.82 × 8.314 × 288
95 × V = 21118.89024
Divide both side by 95
V = 21118.89024 / 95
V = 222.30 L
Thus the volume of Hydrogen needed for the reaction is 222.30 L