<h2>Input =

, water and Output =

</h2>
Explanation:
The light reactions of photosynthesis use water and produce Oxygen, NADPH.
The equation for photosynthesis :
→ 
The process of photosynthesis in two stages -
- The first stage is called the light reaction in which the light energy from the sun is captured and converted into chemical energy stored in the form of ATP and NADPH
- The second stage is the process of conversion of ATP molecules to sugar or glucose (the Calvin Cycle)
For a light reaction -
Net Input is of,
, 
Net Output is of, 
13. D
14. A
15. C
16. B
17. F
18. E
Answer:
This isotope has 59 electrons giving it a charge of -2.
Explanation:
To find this we have to understand isotope relates to the mass of the nucleus. This isotope has 59 electrons to counter the protons and give it a negative charge.
To know the answer, you either know what is really the
nature and chemistry of a sugar solution. You can also know the answer by
knowing the meaning of entropy. Entropy is often interpreted as the degree of
disorder or randomness in the system. So the correct statement is that the
system becomes more disordered and has an increase in entropy.
Answer:- 0.273 kg
Solution:- A double replacement reaction takes place. The balanced equation is:

We have 0.29 L of 22% m/v aluminum nitrate solution. m/s stands for mass by volume. 22% m/v aluminium nitrate solution means 22 g of it are present in 100 mL solution. With this information, we can calculate the grams of aluminum nitrate present in 0.29 L.

= 63.8 g aluminum nitrate
From balanced equation, there is 1:3 mol ratio between aluminum nitrate and sodium chlorate. We will convert grams of aluminum nitrate to moles and then on multiplying it by mol ratio we get the moles of sodium chlorate that could further be converted to grams.
We need molar masses for the calculations, Molar mass of sodium chlorate is 106.44 gram per mole and molar mass of aluminum nitrate is 212.99 gram per mole.

= 
sodium chlorate solution is 35% m/m. This means 35 g of sodium chlorate are present in 100 g solution. From here, we can calculate the mass of the solution that will contain 95.7 g of sodium chlorate and then the grams are converted to kg.

= 0.273 kg
So, 0.273 kg of 35% m/m sodium chlorate solution are required.