Answer:
molality of sodium ions is 1.473 m
Explanation:
Molarity is moles of solute per litre of solution
Molality is moles of solute per kg of solvent.
The volume of solution = 1 L
The mass of solution = volume X density = 1000mL X 1.43 = 1430 grams
The mass of solute = moles X molar mass of sodium phosphate = 0.65X164
mass of solute = 106.6 grams
the mass of solvent = 1430 - 106.6 = 1323.4 grams = 1.3234 Kg
the molality = 
Thus molality of sodium phosphate is 0.491 m
Each sodium phosphate of molecule will give three sodium ions.
Thus molality of sodium ions = 3 X 0.491 = 1.473 m
There are no states in the picture, but Na should have a "(s)" after it, and Cl2 should have a "(g)" after it. NaCl should have an "(s)". Chlorine is a diatomic element so it has a "2" subscript on it.
Hope this helped! :)
Answer:
the volume delivered by the pipette = 22.32 mL
Explanation:
To calculate this, let us first note that the density of water relates it weight and its volume (density = mass ÷ volume), hence we are going to use density to determine the volume.
Density of water = mass/volume = 0.997 g/ mL
mass = 22.25g
Density = 0.997g/mL
volume = ?

∴ the volume delivered by the pipette = 22.32 mL
<em>Please note that this calculation is based on the fact that the weight of the empty flask has been determined and canceled out.</em>
Answer:
Magnesium oxide is a simple basic oxide, because it contains oxide ions. It reacts with water to form magnesium hydroxide which is a base.