Choice 'b' is one possible way to state
Newton's second law of motion.
The other choices are meaningless.
In what may be one of the most remarkable coincidences in
all of physical science, the tangential component of circular
motion points along the tangent to the circle at every point.
The object on a circular path is moving in that exact direction
at the instant when it is located at that point in the circle. The
centripetal force ... pointing toward the center of the circle ...
is the force that bends the path of the object away from a straight
line, toward the next point on the circle. If the centripetal force
were to suddenly disappear, the object would continue moving
from that point in a straight line, along the tangent and away from
the circle.
Answer:
radius comes out to be 3 m
height of the cylinder comes out to be 3m
Explanation:
given
volume of cylinder = 27π m³
π r² h = 27π
r² h = 27.............(1)
surface area of cylinder open at the top
S = 2πrh + π r²




for least amount of material requirement.

hence radius comes out to be 3 m
for height put the value in the equation 1
so, height of the cylinder comes out to be 3m
The question is somewhat ambiguous.
-- It's hard to tell whether it's asking about '3 cubic meters'
or (3m)³ which is actually 27 cubic meters.
-- It's hard to tell whether it's asking about '100 cubic feet'
or (100 ft)³ which is actually 1 million cubic feet.
I'm going to make an assumption, and then proceed to
answer the question that I have invented.
I'm going to assume that the question is referring to
'three cubic meters' and 'one hundred cubic feet' .
OK. We'll obviously need to convert some units here.
I've decided to convert the meters into feet.
For 1 meter, I always use 3.28084 feet.
Then (1 meter)³ = 1 cubic meter = (3.28084 ft)³ = 35.31 cubic feet.
So 3 cubic meters = (3 x 35.31 cubic feet) = 105.9 cubic feet.
That's more volume than 100 cubic feet.
An exothermic reaction is a chemical reaction that releases heat. It gives net energy to its surroundings. That is, the energy needed to initiate the reaction is less than the energy released. ... Δ H = (energy used in forming product bonds) − (energy released in breaking reactant bonds)