1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
10

A 44-turn rectangular coil with length ℓ = 17.0 cm and width w = 8.10 cm is in a region with its axis initially aligned to a hor

izontally directed uniform magnetic field of 765 mT and set to rotate about a vertical axis with an angular speed of 64.0 rad/s.
(a) What is the maximum induced emf in the rotating coil?

(b) What is the induced emf in the rotating coil at t = 1.00 s?

(c) What is the maximum rate of change of the magnetic flux through the rotating coil?
Physics
1 answer:
Mumz [18]3 years ago
5 0

Answer:

The maximum induced emf in the rotating coil  = 29.66V

The induced emf in the rotating coil when (t = 1.00 s) = 26.66V

The maximum rate of change of the magnetic flux through the rotating coil = 0.674Wb/s

Explanation:

Lets state the parameters we are being given right from the question:

Number of rectangular coil, (N) = 44

Length of Coil, l =17cm in meters we have; (l) = 17 × 10⁻² m

Width of Coil, w =8.10cm in meters we have; (w) = 8.10 × 10⁻² m

Magnitude of Uniform Magnetic Field (B) = 767mT= 765 × 10⁻³ T

Angular Speed of Coil, (ω) = 64 rad/s

(a)

To calculate the induced emf in the rotating cell,we can use the formula:

emf = NBAωsin(ωt)

For maximum induced emf, the value of sin(ωt) will be 1

emf_max = NBAω ; if (A = l × w) , we have:

emf_max  = NB(l × w)ω

subsitituting the parameters into the above equation; we have:

emf_max  = 44 × 765 × 10⁻³ ( 17 × 10⁻² × 8.10 × 10⁻² ) × 64

= 29.66V

(b)

At t = 1s, the induced emf is calculated as:

emf = NBAωsin(ωt)

substituting the parameters into the equation, we have:

emf =   44 × 765 × 10⁻³ ( 17 × 10⁻² × 8.10 × 10⁻² ) × 64 × sin (64 × 1)

=26.66V

(c)

To calculate the maximum rate of change of the magnetic flux through the rotating coil; we need to reflect on the equation for the maximum induced emf in terms of magnetic flux.

i.e emf_max = N\frac{d∅}{dt}

since emf_max = 29.66 and N = 44; we have:

29.66 =  44\frac{d∅}{dt}

\frac{d∅}{dt} = \frac{29.66}{44}

= 0.674 Wb/s

You might be interested in
Many scientists would argue that the reproductive system is the most important system in the body. Which of these would best def
Alchen [17]
Answer = A

Without reproduction humans would basically become extinct
4 0
3 years ago
Read 2 more answers
Andy described the functions of two human body organs and labeled them A and B. Look at the table and select the answer that cor
pentagon [3]

Answer:

A are the ovaries and B are the testes

8 0
2 years ago
Read 2 more answers
A particle with mass 1.81×10−3 kg and a charge of 1.22×10−8 C has, at a given instant, a velocity v⃗ =(3.00×104m/s)j^. What are
slava [35]

Answer:

The magnitude and direction of the acceleration of the particle is a= 0.3296\ \hat{k}\ m/s^2

Explanation:

Given that,

Mass m = 1.81\times10^{-3}\ kg

Velocity v = (3.00\times10^{4}\ m/s)j

Charge q = 1.22\times10^{-8}\ C

Magnetic field B= (1.63\hat{i}+0.980\hat{j})\ T

We need to calculate the acceleration of the particle

Formula of the acceleration is defined as

F = ma=q(v\times B)

a =\dfrac{q(v\times B)}{m}

We need to calculate the value of v\times B

v\times B=(3.00\times10^{4}\ m/s)j\times(1.63\hat{i}+0.980\hat{j})

v\times B=4.89\times10^{4}

Now, put the all values into the acceleration 's formula

a =\dfrac{1.22\times10^{-8}\times(-4.89\times10^{4}\hat{k})}{1.81\times10^{-3}}

a= -0.3296\ \hat{k}\ m/s^2

Negative sign shows the opposite direction.

Hence, The magnitude and direction of the acceleration of the particle is a= 0.3296\ \hat{k}\ m/s^2

7 0
3 years ago
Read 2 more answers
You are falling off the edge.what should you do to avoid falling..?
Nadya [2.5K]
Lean your shoulders back and your waist forwards. Use your arms as a counter weight.
3 0
3 years ago
Read 2 more answers
When two objects collide their momentum after the collision is explained by what
pashok25 [27]
The statement to every reacting there is, there is a opposite and same reacting. 
hope it helps
8 0
3 years ago
Other questions:
  • "You are gowning using the closed cuff method. With the assistance of the circulator, you slid your arms into the gown sleeves t
    15·1 answer
  • 1. Calculate the velocity of a 0.8 kg kitten with a forward momentum of 5 kg*m/s.
    12·1 answer
  • A fixed end rectangular cantilever beam is subjected to 40 kg load at its end. The beam is 80 mm high, 20 mm wide and 0.5 m long
    11·1 answer
  • What are similarities and differences of the 1st, 2nd, and 3rd class levers?
    9·1 answer
  • Which wave has a higher frequency than microwaves but lower frequency than UV waves?
    10·1 answer
  • At an amusement park there are 200-kg bumper cars A, B, and C that have riders with masses of 55 kg, 90 kg, and 42.5 kg respecti
    11·1 answer
  • Which describes how prevailing winds affect precipitation in a region?
    7·2 answers
  • A car moves in a straight line at a speed of 68.5 km/h. How far (in km) will the car move in 5.45 minutes at this speed?
    8·1 answer
  • 100 g of water at 25 °C is poured into an insulating cup. 50 g of ice at 0 °C is added to the
    6·1 answer
  • HELP PLEASE!!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!