Explanation:
Speed of the marathon runner, v = 9.51 mi/hr
Distance covered by the runner, d = 26.220 mile
Let t is the time taken by the marathon runner. We know that the speed of the runner is given by total distance divided by total time taken. Mathematically, it is given by :



t = 2.75 hours
Since, 1 hour = 60 minutes
t = 165 minutes
Since, 1 minute = 60 seconds
t = 9900 seconds
Hence, this is the required solution.
Using the formula:
a = (Vf - Vi) / t
Our initial velocity is 0 m/s, and our final velocity is 8.15 m/s, with a time period of 5 seconds:
a = (8.15 - 0.0) / 5
a = 1.63 m/s^2
If you know the acceleration due to gravity on the Moon, you can confirm this answer. The recorded gravitational acceleration on the Moon is 1.62 m/s^2.
Of the cliff?
Projectile motion
In the problem we are asked to find a height of certain cliff when a motorcycle stunt driver zoom out horizontally at the end the cliff at an initial velocity. So we will use one of the kinematics equation for projectile motion,
y
=
v
o
y
t
+
1
2
g
t
where
v
o
y
is just equal to zero since we can assume that the driver zooms out horizontally,
g
=
9.8
m
/
s
2
and
t
is time after
Answer:
Momentum Packet Answer KEY - Science Online
YOU WILL SEE THE PDF
Answer:
3.57 MJ
Explanation:
ASSUMING it's fresh water with density of 1000 kg/m³
W = ΔPE = mgΔh = 14.0(1000)(9.81)(26.0) = 3,570,840 J
Salt water would require more.