Answer:
Option c
Explanation:
Magnetic field lines form loops starting from north pole to south pole outside the magnet and from south pole to north pole inside the magnet.
Thus the field is such that it is directed outwards from the North pole and directed inwards to the South pole of the magnet.
A compass in a magnetic field will will comply with the magnet's North pole directing towards the magnetic field.
Answer:
1) True, 2) True, 3) False, 4) False, 5) False
Explanation:
1) True. Dissipative energy cannot be recovered, in general it is a form of heat
2) True. The dissipation can be by radiation, heat
3) False. Mechanical energy is divided into K and U but not in equal parts
4) False. When there are dissipative interactions, part of the mechanical energy is set in the form of heat, so its value decreases
5) False. Mechanical energy is the sum of those two energies
<span>A: put an atom on a poster in the exhibit
Good luck. The poster itself is made of trillions of trillions of trillions
of atoms. You could not see the extra one any easier than you could
see the ones that are already there, and even if you could, it would be
lost in the crowd.
B: use a life size drawing of an atom
Good luck. Nobody has ever seen an atom. Atoms are too small
to see. That's a big part of the reason that nobody knew they exist
until less than 200 years ago.
D: set up a microscope so that visitors can view atoms
Good luck. Atoms are way too small to see with a microscope.
</span><span><span>C: Display a large three dimensional model of an atom.
</span> </span>Finally ! A suggestion that makes sense.
If something is too big or too small to see, show a model of it
that's just the right size to see.
the independent variable is what you're testing or changing in an experiment, so the answer is the temperature of the ball when its dropped.
i hope that helped <3