Complete question:
Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field strength at the midpoint between the two rings ?
Answer:
The electric field strength at the mid-point between the two rings is zero.
Explanation:
Given;
diameter of each ring, d = 10 cm = 0.1 m
distance between the rings, r = 21.0 cm = 0.21 m
charge of each ring, q = 40 nC = 40 x 10⁻⁹ C
let the midpoint between the two rings = x
The electric field strength at the midpoint between the two rings is given as;

Therefore, the electric field strength at the mid-point between the two rings is zero.
Answer:
0.8712 m/s²
Explanation:
We are given;
Velocity of first car; v1 = 33 m/s
Distance; d = 2.5 km = 2500 m
Acceleration of first car; a1 = 0 m/s² (constant acceleration)
Velocity of second car; v2 = 0 m/s (since the second car starts from rest)
From Newton's equation of motion, we know that;
d = ut + ½at²
Thus,for first car, we have;
d = v1•t + ½(a1)t²
Plugging in the relevant values, we have;
d = 33t + 0
d = 33t
For second car, we have;
d = v2•t + ½(a2)•t²
Plugging in the relevant values, we have;
d = 0 + ½(a2)t²
d = ½(a2)t²
Since they meet at the next exit, then;
33t = ½(a2)t²
simplifying to get;
33 = ½(a2)t
Now, we also know that;
t = distance/speed = d/v1 = 2500/33
Thus;
33 = ½ × (a2) × (2500/33)
Rearranging, we have;
a2 = (33 × 33 × 2)/2500
a2 = 0.8712 m/s²
Answer:
lol im pretty sure pipes and nice pic of lil darkie
Explanation:
2+2=4
Well the centripetal acceleration would be 9.82 squared. That is the correct answer. I hope this helped you. Have a great day! :)
The spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Explanation:
When a spring is stretched or compressed its length changes by an amount x from its equilibrium length then the restoring force is exerted.
spring constant is k = 1.00 * 10^3 N/m
mass is x = 20.0 cm
According to Hooke's law, To find restoring force,
F = - kx
= - 1.00 *10 ^3 * 20.0
F = 20000 N/m
Thus, the spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.