4tan^(2)x-((4)/(cotx))+sinxcscx
Multiply -1 by the (4)/(cotx) inside the parentheses.
4tan^(2)x-(4)/(cotx)+sinxcscx
To add fractions, the denominators must be equal. The denominators can be made equal by finding the least common denominator (LCD). In this case, the LCD is cotx. Next, multiply each fraction by a factor of 1 that will create the LCD in each of the fractions.
4tan^(2)x*(cotx)/(cotx)-(4)/(cotx)+sin...
Complete the multiplication to produce a denominator of cotx in each expression.
(4tan^(2)xcotx)/(cotx)-(4)/(cotx)+(cot...
Combine the numerators of all expressions that have common denominators.
<span>
(4tan^(2)xcotx-4+cotxsinxcscx)/(cotx)</span>
To check the decay rate, we need to check the variation in y-axis.
Since our interval is
![-2We need to evaluate both function at those limits.At x = -2, we have a value of 4 for both of them, at x = 0 we have 1 for the exponential function and 0 to the quadratic function. Let's call the exponential f(x), and the quadratic g(x).[tex]\begin{gathered} f(-2)=g(-2)=4 \\ f(0)=1 \\ g(0)=0 \end{gathered}](https://tex.z-dn.net/?f=-2We%20need%20to%20evaluate%20both%20function%20at%20those%20limits.%3Cp%3E%3C%2Fp%3E%3Cp%3EAt%20x%20%3D%20-2%2C%20we%20have%20a%20value%20of%204%20for%20both%20of%20them%2C%20at%20x%20%3D%200%20we%20have%201%20for%20the%20exponential%20function%20and%200%20to%20the%20quadratic%20function.%20Let%27s%20call%20the%20exponential%20f%28x%29%2C%20and%20the%20quadratic%20g%28x%29.%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20f%28-2%29%3Dg%28-2%29%3D4%20%5C%5C%20f%280%29%3D1%20%5C%5C%20g%280%29%3D0%20%5Cend%7Bgathered%7D)
To compare the decay rates we need to check the variation on the y-axis of both functions.

Now, we calculate their ratio to find how they compare:

This tell us that the exponential function decays at three-fourths the rate of the quadratic function.
And this is the fourth option.
Answer:
$10,234.31
Step-by-step explanation:
A suitable financial calculator or spreadsheet can evaluate the future value function for you. It will tell you that $10,234.31 must be deposited today to have $13,000 in three years, when interest is 8% compounded monthly.
__
You are solving for P:
13000 = P(1 +0.08/12)^(12×3)
P = 13000/(1 +0.08/12)^36 ≈ 10,234.31