Assuming these are 4^(1/7), 4^(7/2), 7^(1/4) and 7^(1/2), the conversion process is pretty quick. the denominator, or bottom, of your fraction exponent becomes the "index" of your radical -- in ∛, "3" is your index, just for reference. the numerator, aka the top of the fraction exponent, becomes a power inside the radical.
4^(1/7) would become ⁷√4 .... the bottom of the fraction becomes the small number included in the radical and the 4 goes beneath the radical
in cases such as this one, where 1 is on top of the fraction radical, that number does technically go with the 4 beneath the radical--however, 4¹ = 4 itself, so there is no need to write the implied exponent.
4^(7/2) would become √(4⁷) ... the 7th power goes with the number under your radical and the "2" becomes a square root
7^(1/4) would become ⁴√7 ... like the first answer, the bottom of the fraction exponent becomes the index of the radical and 7 goes beneath the radical. again, the 1 exponent goes with the 7 beneath the radical, but 7¹ = 7
7^(1/2) would become, simply, √7
Answer:
5/16
Step-by-step explanation:
In 5/2 the time, we expect that 5/2 × 1/8 = 5/16 of the test will be complete.
_____
5/2 × (2/5 h) = 1 h
19-y because you are taking away y from 19
This question requires creating a few equations and working through them step-by-step. Now, first let's give each of the shapes a variable: let's say that the blue shape is a, the orange shape is b and the green shape is c.
1. We can technically create six formulas for the magic square, with three for sum of the rows and three for the sum of the columns, however the smartest way to approach this is to observe whether there are any obvious answers that we can get.
We can see in row 2 that there are three of the same shape (a) that add to 57. This makes it very simple to calculate the value of the shape.
Since 3a = 57
a = 57/3 = 19
2. Now we need to find a row or column that includes a and one other shape; we could choose either column 2 or 3, so let's go with column 2. Remembering that the blue shape is a and the orange shape is b:
2a + b = 50
Now, given that a = 19:
2(19) + b = 50
38 + b = 50
b = 12
3. We can now take any of the rows or columns that include the third shape (c) since we already know the values of the other two shapes. Let's take column 1:
a + b + c = 38
19 + 12 + c = 38
31 + c = 38
c = 38 - 31
c = 7
Thus, the value of the blue shape is 19, the value of the orange shape is 12 and the value of the green shape is 7.