Answer:
wave speed slow down as it hits different material
Reduction is the gain of electrons, then potential of reducción is the tendency of a sustance to gain electrons. In this case the sustance is an electrode.
Then the reduction potential refers to the tendency of one electrode to gain electrons and it is measured against a standard electrode which is the electrode of hydorgen.
When you consider the pair of half-cell reactions, the potential of the cell is the reduction potential - oxidation potential.
Answer:
rate = k[A][B] where k = k₂K
Explanation:
Your mechanism is a slow step with a prior equilibrium:
![\begin{array}{rrcl}\text{Step 1}:& \text{A + B} & \xrightarrow [k_{-1}]{k_{1}} & \text{C}\\\text{Step 2}: & \text{C + A} & \xrightarrow [ ]{k_{2}} & \text{D}\\\text{Overall}: & \text{2A + B} & \longrightarrow \, & \text{D}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrcl%7D%5Ctext%7BStep%201%7D%3A%26%20%5Ctext%7BA%20%2B%20B%7D%20%26%20%5Cxrightarrow%20%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7D%20%26%20%5Ctext%7BC%7D%5C%5C%5Ctext%7BStep%202%7D%3A%20%26%20%5Ctext%7BC%20%2B%20A%7D%20%26%20%5Cxrightarrow%20%5B%20%5D%7Bk_%7B2%7D%7D%20%26%20%5Ctext%7BD%7D%5C%5C%5Ctext%7BOverall%7D%3A%20%26%20%5Ctext%7B2A%20%2B%20B%7D%20%26%20%5Clongrightarrow%20%5C%2C%20%26%20%5Ctext%7BD%7D%5C%5C%5Cend%7Barray%7D)
(The arrow in Step 1 should be equilibrium arrows).
1. Write the rate equations:
![-\dfrac{\text{d[A]}}{\text{d}t} = -\dfrac{\text{d[B]}}{\text{d}t} = -k_{1}[\text{A}][\text{B}] + k_{1}[\text{C}]\\\\\dfrac{\text{d[C]}}{\text{d}t} = k_{1}[\text{A}][\text{B}] - k_{2}[\text{C}]\\\\\dfrac{\text{d[D]}}{\text{d}t} = k_{2}[\text{C}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BA%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BB%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-k_%7B1%7D%5B%5Ctext%7BA%7D%5D%5B%5Ctext%7BB%7D%5D%20%2B%20k_%7B1%7D%5B%5Ctext%7BC%7D%5D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BC%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BA%7D%5D%5B%5Ctext%7BB%7D%5D%20-%20k_%7B2%7D%5B%5Ctext%7BC%7D%5D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BD%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%5Ctext%7BC%7D%5D)
2. Derive the rate law
Assume k₋₁ ≫ k₂.
Then, in effect, we have an equilibrium that is only slightly disturbed by C slowly reacting to form D.
In an equilibrium, the forward and reverse rates are equal:
k₁[A][B] = k₋₁[C]
[C] = (k₁/k₋₁)[A][B] = K[A][B] (K is the equilibrium constant)
rate = d[D]/dt = k₂[C] = k₂K[A][B] = k[A][B]
The rate law is
rate = k[A][B] where k = k₂K
Answer:
C₂H₄O
Explanation:
In a compound that contains Cabon, hydrogen and oxygen, the combustion produce CO₂ from the carbon, and H₂O from the hydrogens. Using the mass of the products we can solve the moles of Carbon and hydrogen. The empirical formula is the simplest whole-number of atoms present in a molecule.
<em>Moles CO₂ = Moles C:</em>
11.8g CO₂ * (1mol / 44g) = 0.268 moles CO₂ = 0.268 moles C * (12g/mol) =
3.216g C
<em>Moles H₂O = 1/2 moles H:</em>
4.83g H₂O * (1mol / 18g) = 0.268 moles H₂O * (2 mol H / 1 mol H₂O) =
0.537 mol H * (1g/mol) = 0.537g H
<em>Mass O to find moles O:</em>
5.90g Sample - 3.216g C - 0.537g H = 2.147g O * (1mol / 16g) = 0.134 moles O
<em>Ratio of atoms -Dividing in 0.134 moles-:</em>
C = 0.268mol C / 0.134 mol O = 2
H = 0.537mol H / 0.134 mol O = 4
O = 0.134mol O / 0.134 mol O = 1
Empirical formula is:
<h3>C₂H₄O</h3>
Answer:
See explanation.
Explanation:
Hello!
In this case, we consider the questions:
a. Ideal gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
b. Van der Waals gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
Thus, we define the ideal gas equation and the van der Waals one as shown below:

Whereas b and a for hydrogen sulfide are 0.0434 L/mol and 4.484 L²*atm / mol² respectively, therefore, we proceed as follows:
a.
i. 273.15 K and 22.414 L.

ii. 500 K and 100 cm³ (0.1 L).

b.
i. 273.15 K and 22.414 L: in this case, v = 22.414 L / 1.00 mol = 22.414 L/mol

ii. 500 K and 100 cm³: in this case, v = 0.1 L / 1.00 mol = 0.100 L/mol

Whereas we can see a significant difference when the gas is at 500 K and occupy a volume of 0.100 L.
Best regards!