It is Tension as the other 3 answer choices would not make sense. Compression would mean you are pressing the rock on both sides or in this case, pushing it into the dirt. It can't be nuclear force as you are pulling out a rock. Air resistance would not make sense either as there is no air involved in the scenario at all.
Answer:
The value of the inductance is 175.9 mH.
Explanation:
Given that,
Capacitor 
Frequency = 60.0 Hz
The inductor and capacitor is connected in parallel, the voltage across each of these elements is the same.
We have,

Using ohm's law




Put the value into the formula




Hence, The value of the inductance is 175.9 mH.
Answer:
Option C. The force between them would be 4 times larger than with the
initial masses.
Explanation:
To know which option is correct, we shall determine the force of attraction between the two masses when their masses are doubled. This can be obtained as follow:
From:
F = GMₐM₆/ r²
Keeping G/r² constant, we have
F₁ = MₐM₆
Let the initial mass of both objects to be m
F₁ = MₐM₆
F₁ = m × m
F₁ = m²
Next, let the masses of both objects doubles i.e 2m
F₂ = MₐM₆
F₂ = 2m × 2m
F₂ = 4m²
Compare the initial and final force
Initial force (F₁) = m²
Final (F₂) = 4m²
F₂ / F₁ = 4m² / m²
F₂ / F₁ = 4
F₂ = 4F₁ = 4m²
From the above illustrations, we can see that when the mass of both objects doubles, the force between them would be 4 times larger than with the
initial masses.
Thus, option C gives the correct answer to the question.
Given
The projectile is in air for a time of t=8 sec
To find
The time it takes to reach the highest point
Explanation
A projectile moves up to the highest point and then again moves down following a parabolic path.
So it will reach the highest point at a time half the time it requires to follow teh parabolic path.
The time taken to reach the highest point is 4 sec
Conclusion
The time taken is 4 sec.