(a) 1200 rad/s
The angular acceleration of the rotor is given by:

where we have
is the angular acceleration (negative since the rotor is slowing down)
is the final angular speed
is the initial angular speed
t = 10.0 s is the time interval
Solving for
, we find the final angular speed after 10.0 s:

(b) 25 s
We can calculate the time needed for the rotor to come to rest, by using again the same formula:

If we re-arrange it for t, we get:

where here we have
is the initial angular speed
is the final angular speed
is the angular acceleration
Solving the equation,

When the object is at the focal point the angular magnification is 2.94.
Angular magnification:
The ratio of the angle subtended at the eye by the image formed by an optical instrument to that subtended at the eye by the object when not viewed through the instrument.
Here we have to find the angular magnification when the object is at the focal point.
Focal length = 6.00 cm
Formula to calculate angular magnification:
Angular magnification = 25/f
= 25/ 8.5
= 2.94
Therefore the angular magnification of this thin lens is 2.94
To know more about angular magnification refer:: brainly.com/question/28325488
#SPJ4
Gravitational force is stronger
Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
1. Sound insulation at construction sides.
2. Using silencers in automobiles and replacing old noisy machines with new quitter machines or using lubricants