Answer:
The distance traveled!
Explanation:
This is a velocity time graph of an object moving in a straight line due North.
Answer:
a) 
b) 

Explanation:
Searching the missed information we have:
E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J
m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg
m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg
a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:
Linear momentum:


Since the plutonium nucleus is originally at rest,
:
(1)
Kinetic Energy:

(2)
By entering equation (1) into (2) we have:
Solving the above equation for
we have:

And by entering that value into equation (1):
The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.
b) Now, the kinetic energy of each nucleus is:
For He-4:

For U-235:

I hope it helps you!
Answer:
0.42 m/s²
Explanation:
r = radius of the flywheel = 0.300 m
w₀ = initial angular speed = 0 rad/s
w = final angular speed = ?
θ = angular displacement = 60 deg = 1.05 rad
α = angular acceleration = 0.6 rad/s²
Using the equation
w² = w₀² + 2 α θ
w² = 0² + 2 (0.6) (1.05)
w = 1.12 rad/s
Tangential acceleration is given as
= r α = (0.300) (0.6) = 0.18 m/s²
Radial acceleration is given as
= r w² = (0.300) (1.12)² = 0.38 m/s²
Magnitude of resultant acceleration is given as


= 0.42 m/s²
Answer:
Angle Of Incidence Formula The angle of incidence is equal to the reflected angle through the law of reflection. The angle of incidence and the angle of reflection is always equal, and they are both on the same plane along with the normal. 2,44,451
Explanation:
that could help you with work.