Answer:
The acceleration of the player is - 4.9 m/s²
Explanation:
The given is:
1. The mass of the player is 55 kg
2. His initial speed is 4.6 m/s
3. The coefficient of the kinetic fraction between the player and the
ground is 0.50
We need to find the player acceleration
According to Newton's Law
→ ∑ forces in direction of motion = mass × acceleration
There is only the friction force opposite to the motion
→ Friction force = μR
where μ is the coefficient of friction and R is the normal reaction
→ The normal reaction R = mg
where m is the mass and g is the acceleration of gravity
→ m = 55 kg , g = 9.8 m/s²
→ R = 55 × 9.8 = 539 N
→ ∑ F = - μR
→ - μR = m × a
→ μ = 0.5 , R = 539 N , m = 55
→ -(0.5)(539) = 55 × a
→ - 269.5 = 55 a
Divide both sides by 55
→ a = - 4.9 m/s²
The acceleration of the player is - 4.9 m/s²
Learn more:
You can learn more about Newton's law in brainly.com/question/11911194
#LearnwithBrainly
Latent heat fusion(l)=540
∆t= temp(100-0)
Q=ml+ms∆T
Q=500.100+100.1.100
Q=64000 cal
Answer:
it will decrease
Explanation:
According to the law of universal gravitation, the gravitational force exerted by the moon on the spacecraft is equal to the product of their masses and inversely proportional to the square of the distance that separates them. Therefore, as the spacecraft moves away, its distance increases and the force of attraction exerted by the moon decreases.
Answer:
The change of the momentum of the ball is
Explanation:
We should find
(1)with
the initial momentum and
the final momentum. Linear momentum is defined as
, using that on (1):
(2)
It's important to note that momentum and velocity are vectors and direction matters, so if +x direction is the direction towards the wall and the -x direction away the wall
and
so (2) becomes:

Copernicus preferred the heliocentric model.