Answer:
Δx=(v+v0/2)t
Explanation:
We can figure out which kinematic formula to use by choosing the formula that includes the known variables, plus the target unknown.
In this problem, the target unknown is the initial velocity v_0v
0
v, start subscript, 0, end subscript of the roller coaster.
Answer:
im pretty sure nuclear if not nitrogen
Explanation:
Yes that's correct. Also zeros in between non-zero numbers are significant figures
The maximum height to which the ball attain before falling back down is 1147.96 m
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Initial velocity (u) = 150 m/s
- Final velocity (v) = 0 m/s (at maximum height)
- Acceleration due to gravity (g) = 9.8 m/s²
- Maximum height (h) =?
<h3>How to determine the maximum height </h3>
The maximum height reached by the ball can be obtained as illustrated below:
v² = u² – 2gh (since the ball is going against gravity)
0² = 150² – (2 × 9.8 × h)
0 = 22500 – 19.6h
Collect like terms
0 – 22500 = –19.6h
–22500 = –19.6h
Divide both side by –19.6
h = –22500 / –19.6
h = 1147.96 m
Thus, the maximum height reached by the ball is 1147.96 m
Learn more about motion under gravity:
brainly.com/question/22719691
#SPJ1