Answer:
total time = 65 seconds
total distance = 1554 meters
Explanation:
kinematic equation:
final velocity = initial velocity + acceleration multiplied by time
v_1 = v_0 + at
28 m/s = 0 m/s + 2 m/s^2 (t)
t = 14 seconds
a) total time = 14 + 46 + 5 = 65 seconds
b) must solve for total distance and divide it by time.
d_1 = v_0t + 1/2 a * t^2
d_1 = 0 + 0.5(2) * 14^2
d_1 = 196 meters
d2 = vt
d2 = 28 *46
d2 = 1288 meters
v_1 = v_o + at
0 = 28 + a(5)
- 28/5 = a
a = - 5.6 m/s^2
d_3 = v_0t + 1/2 a * t^2
d_3 = 28 (5) - 0.5(5.6)*5^2
d_3 = 70 meters
total distance = d1 + d2 + d3 = 196 + 1288 + 70 = 1554 meters
Real and erect
Explanation
Answer:
just trace a picture of it.
A) It would be doubled.
Why?
To answer the question, we just need to calculate the momentum of the basketball using the following formula:

Now, we have calculated the momentum and the result is 12 kg.m/s, what would happen to the velocity if we double the momentum? Let's calculate it!

Hence, we can see that if the momentum is doubled, the velocity will be doubled too.
Have a nice day!
Answer:
Pressure of liquid in container is given by, P= height × density × acceleration of gravity.
At the lower storey, the height of the liquid from the open end is great, since height is directly proportional to pressure, the pressure exerted by liquid is maximum hence increase in velocity of flow.
Unlike the upper storey where the height of water is less hence the pressure exerted by the liquid is minimum which decreases the velocity / speed of liquid flow