Answer:
8.67807 N
34.7123 N
Explanation:
m = Mass of shark = 92 kg
= Density of seawater = 1030 kg/m³
= Density of freshwater = 1000 kg/m³
= Density of shark = 1040 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Net force on the fin is (seawater)

The lift force required in seawater is 8.67807 N
Net force on the fin is (freshwater)

The lift force required in a river is 34.7123 N
Answer: current is 8.0 A
Explanation: R= U/I I = U/R = 120 V/15 Ω= 8.0 A
Well, isn’t v=d/t, then by making subject d, d=vt, turn 3 hours into seconds, 1hr=3600sec, hence 3hr=x, cross multiply and you would have converted it into seconds, then put it into your equation of d=vt
Answer:
<em>The body flies off to the left at 9.1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:
![m_1v_1+m_2v_2=m_1v'_1+m_2v'_2\qquad\qquad[1]](https://tex.z-dn.net/?f=m_1v_1%2Bm_2v_2%3Dm_1v%27_1%2Bm_2v%27_2%5Cqquad%5Cqquad%5B1%5D)
Wall-E robot is initially at rest, its two parts together. His head has a mass of m1=0.75 kg and his body has a mass of m2=6.2 kg. Both parts have initial speeds of zero v1=v2=0.
After the explosion, his head flies off to the right at v1'=75 m/s. We are required to find the speed of his body v2'. Solving [1] for v2':

Substituting values:


The body flies off to the left at 9.1 m/s
Answer:
8 electrons in the third energy level
Explanation:
From the description,the third energy level has 8 electron (represented by the small green balls you describe)