Answer:
r = 102.43 m
Explanation:
Newton's second law for this case is
F = ma
Where the acceleration is centripetal
a = v² / r
r = v² / a
They indicate that the radial acceleration is 8.45 g
r = v² / 8.45 g.
r = 92.1² / 8.45 9.8
r = 102.43 m
Answer:
This came to mind
Explanation:
when a cannon fires (in real life or in the movies) have noticed that the cannon recoils, sliding backwards after the explosion. Again, a non-zero net force on the cannon changes its momentum.
Answer:
50 m/s
Explanation:
Angle = 60 degree
Horizontal component of velocity = 50 m/s
A projectile motion is the motion of an object in two dimensions under the influence of gravity.
In this case, the object has no acceleration along horizontal direction, it has acceleration in vertical direction which is equal to the acceleration due to gravity of earth.
When the projectile reaches at the maximum height it travels only along the horizontal and thus it has only horizontal velocity at that instant.
Thus, the velocity of teh projectile at maximum height is same as horizontal component of velocity that meas 50 m/s.
Answer:
Explanation:
We define the linear density of charge as:

Where L is the rod's length, in this case the semicircle's length L = πr
The potential created at the center by an differential element of charge is:

where k is the coulomb's constant
r is the distance from dq to center of the circle
Thus.

Potential at the center of the semicircle