Answer:
10.01 cm
Explanation:
Given that,
The time delay between transmission and the arrival of the reflected wave of a signal using ultrasound traveling through a piece of fat tissue was 0.13 ms.
The average propagation speed for sound in body tissue is 1540 m/s.
We need to find the depth when the reflection occur. We know that, the distance is double when transmitting and arriving. So,

or
d = 10.01 cm
So, the reflection will occur at 10.01 cm.
The student’s suggestion who provides enough evidence to be able to determine the value of each resistor is student D.
<h3>What is current?</h3>
The current is the stream of charges which flow inside the conductors when connected across the end of voltage.
For the given set of parallel resistors, we need to find the resistance of each resistor.
From the Ohm's law, V =IR
R = V/I
Resistance value depends upon the voltage difference across the resistor and the current flowing through that resistance.
Thus, the student D gives enough evidence to find resistance of the circuit is
Learn more about current.
brainly.com/question/10677063
#SPJ1
<span>The waves with the lowest energy and lowest frequencies of the electromagnetic spectrum are the "Radio waves"
So, option B is your answer
Hope this helps!
</span>
Answer:
The first answer is W and Z, since they appear to be a period apart. Dont know the second question. I did what I could, hope someone can answer the second.
Answer:
a) True. The image of the mite is virtual
e) True. The image must be within the focal length of the eyepiece len
Explanation:
Let's review the general characteristics of compound microscopes
Formed by two converging lenses
Magnification is
M = -L/fo 0.25/fe
Where fo is the focal length of the objective lens and fe is the focal length of the ocular lens, L is the tube length
Let's review the claims
a) True. The image of the mite is virtual
b) False. The effect is the opposite of the magnification equation
c) False. The objective lens forms a real image
d) False. As the seal distance increases the magnification decreases
e) True. The image must be within the focal length of the eyepiece len