Answer:
Explanation:
radius of circle r = 0.9 m.
(a ) In a motion on circular path , work done is zero because force ( centripetal force ) acts perpendicular to displacement .
( b )
Tension in string T = m ω²r
Putting the values
60 = .072 x ω² x 0.9
ω² = 926
ω = 30.4 rad /s
angle made in 20 revolutions θ = 20 x 2π = 126.6 rad
time taken = θ / ω
= 126.6 / 30.4
= 4.16 s .
Answer:
the electroscope separate by the presence of charge carriers
Explanation:
Metal bodies are characterized by having free (mobile) electrons. In the electroscope the plates are in balance; when the external metal ball is touched, a charge is introduced into the device, when the body that touched the ball is separated, an excess charge remains. This charge, being a metal, is distributed over the entire surface, giving a uniform density and an electric force of repulsion is created between the two charged sheets, which tends to separate the sheets. This force is counteracted by the tension component as the sheets are separated at a given angle, the separation reaches the point where
Fe - Tx = 0
Fe = Tx
In summary, the electroscope separate its leaves by the presence of charge carriers
Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.
Answer:
Distance of the object is 8.6 m
Explanation:
As we know that the speed of sound at t degree C is given as

here we know that the temperature is
t = 20 degree C
so we have


now we know that bat heard the echo of sound in 0.05 s
so the to and fro distance of the object is d + d = 2d
so we have


