Answer: The correct option is heterogeneous mixture whose components are attracted differently to a magnet.
Explanation: There are two types of mixtures:
1) Homogeneous mixtures: In these mixtures, the particles are uniformly distributed throughout the mixture. These particles cannot be separated.
2) Heterogeneous Mixtures: These are the mixtures where the particles are visible separated and are not-uniformly distributed. These particles can be separated easily.
If magnet is used to separate the components of a mixture, the heterogeneous mixtures will only get separated.
To separate the components by a magnet, the components of a mixture should attract the magnet differently. One component should attract the magnet and another should not. Hence, they can be easily separated.
Answer:
It's Effective Collision.
Explanation:
Hope my answer has helped you!
Answer:
C5H5N is the base and C5H5NH+ is the conjugate acid
H2O is the acid and OH− is the conjugate base
Explanation:
<u>Hydrogen + is also called a proton</u>
C5H5N is the base because it receives the proton (H+) and C5H5NH+ is its conjugate acid
H2O is the acid because it gives up the proton and OH− is the conjugate base because it is capable of receiving the proton
Answer:
HNO3 is the acid and NO3- is the conjugate base
H2O is the base and H3O+ is the conjugate acid
Explanation
HNO3 is the acid and NO3− is its conjugate base, capable of receiving a proton
H2O is the base because it receives the proton and H3O+ is a conjugate acid capable of giving up the proton.
Answer:
The freezing point of the solution is - 4.39 °C.
Explanation:
We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
density of water = 1 g/mL.
<em>So, the mass of 575 mL is 575 g = 0.575 kg.</em>
m is the molality of the solution (m = moles of solute / kg of solvent = (465 g / 342.3 g/mol)/(0.575 kg) = 2.36 m.
<em>∴ ΔTf = (Kf)(m</em>) = (-1.86 °C/m)(2.36 m) = <em>- 4.39 °C.</em>
<em>∵ The freezing point if water is 0.0 °C and it is depressed by - 4.39 °C.</em>
<em>∴ The freezing point of the solution is - 4.39 °C.</em>