Answer:
= 913.84 mL
Explanation:
Using the combined gas laws
P1V1/T1 = P2V2/T2
At standard temperature and pressure. the pressure is 10 kPa, while the temperature is 273 K.
V1 = 80.0 mL
P1 = 109 kPa
T1 = -12.5 + 273 = 260.5 K
P2 = 10 kPa
V2 = ?
T2 = 273 K
Therefore;
V2 = P1V1T2/P2T1
= (109 kPa × 80 mL × 273 K)/(10 kPa× 260.5 K)
<u>= 913.84 mL</u>
I believe that the molar mass is 342.34g/mol
The answer to that question is c
<u>Answer:</u> The correct answer is 1.18 g.
<u>Explanation:</u>
We are given a chemical equation:

We know that at STP conditions:
22.4L of volume is occupied by 1 mole of a gas.
So, 2.21L of carbon dioxide is occupied by =
of carbon dioxide gas.
By Stoichiometry of the above reaction:
1 mole of carbon dioxide gas is produced by 1 mole of carbon
So, 0.0986 moles of carbon dioxide is produced by =
of carbon.
Now, to calculate the mass of carbon, we use the equation:

Moles of carbon = 0.0986 mol
Molar mass of carbon = 12 g/mol
Putting values in above equation, we get:

Hence, the correct answer is 1.18 g.