Answer: The greatest number of pages Kenji can decorate = 3
Step-by-step explanation:
Given: Total heart stickers = 15
Total star stickers =12
If all the papers identical, with the same combination of heart and star stickers and no stickers left over.
Then the greatest number of pages Kenji can decorate = GCD(15,12) [GCD=greatest common divisor]
Since 15 = 3 x 5
12=2 x 2 x 3
GCD(15,12) =3
Hence, the greatest number of pages Kenji can decorate = 3
Answer: I’m sorry I can’t figure out what A B and C are but ax=(2,0) and by=(0,4) I believe
Step-by-step explanation:
X intercept (2,0). Y intercept (0,4)
Answer:
Protein
Step-by-step explanation:
According to U.S. Food and Drug Administration (FDA) information, the current scientific evidence indicates that protein intake is not a matter of public concern, this is why the FDA does not request to add a % Daily Value on the Nutrition Facts panel, unless if the product is made for protein such as 'high protein' products or if this food is meant for use by childrend under 4 years old.
Huh? What are you saying?
The quadratic formula, has a part we call the "discriminant" defined by the variables that are inside the square root, and is denotated by "delta":
<span>Δ=<span>b2</span>−4ac</span>
Whenever we solve a quadratic equation that is complete and we analyze the discriminant, we can get 3 scenarios:
<span>if→Δ>0<span>=></span>∃<span>x1</span>,<span>x2</span>/a<span>x2</span>+bx+c=0</span>
This just means: "if the discriminant is greater than zero, there will exist two x-intercepts"
And for the second scenario:
<span>if→Δ=0→∃<span>xo</span>/a<span>x2</span>+bx+c=0</span>
This means: "if the discriminant is equal to zero, there will be one and only one x-intercept"
And for the last scenario:
<span>if→Δ<0→∃x∉R/a<span>x2</span>+bx+c=0</span>
This means that :"if the discriminant is less than zero, there will be no x-intercepts"
So, if we take your excercise and analyze the the discriminant:
<span>3<span>x2</span>+7x+m=y</span>
we will find the values that satisfy y=0 :
<span>3<span>x2</span>+7x+m=0</span>
And we'll analyze the discriminant:
<span>Δ=<span>72</span>−4(3)(m)</span>
And we are only interested in the values that make the discriminant equal zero:
<span><span>72</span>−4(3)(m)=0</span>
All you have to do is solve for "m".