Quadrent 1 because they are both positive numbers
The technique of matrix isolation involves condensing the substance to be studied with a large excess of inert gas (usually argon or nitrogen) at low temperature to form a rigid solid (the matrix). The early development of matrix isolation spectroscopy was directed primarily to the study of unstable molecules and free radicals. The ability to stabilise reactive species by trapping them in a rigid cage, thus inhibiting intermolecular interaction, is an important feature of matrix isolation. The low temperatures (typically 4-20K) also prevent the occurrence of any process with an activation energy of more than a few kJ mol-1. Apart from the stabilisation of reactive species, matrix isolation affords a number of advantages over more conventional spectroscopic techniques. The isolation of monomelic solute molecules in an inert environment reduces intermolecular interactions, resulting in a sharpening of the solute absorption compared with other condensed phases. The effect is, of course, particularly dramatic for substances that engage in hydrogen bonding. Although the technique was developed to inhibit intermolecular interactions, it has also proved of great value in studying these interactions in molecular complexes formed in matrices at higher concentrations than those required for true isolation.
I'll explain how to do the first one:-
y = cos-1(x2)
This can be described as ' a function of a function' x^2 is a function of x and cos-1(x^2) is a function of x^2.
We need to apply the chain rule.
Personally I find this easier to understand if i let u = x^2, so
If y = f(u) and u is a function of x then
dy/dx = dy/ du * du/dx
Here u = x^2 and y = cos-1(u)
du/dx = 2x
so dy/dx = d(cos-1(x^2) dx = dy/du * du/dx
= -1 / √(1 - u^2) * 2x
= -2x / √(1 - u^2)
= -2x / √(1 - (x^2)^2)
= -2x / √(1 - x^4)
I hope this helps. but if not. you might like to employ the formulae in the question - The square boxes contain the 'u' s in my answer. These formulae are equivalent to my explanation.
Answer: average y = -8 average y =2
ARC : -4
Step-by-step explanation:
Side opposite 30 = 1/2(hypotenuse) ⇒ 1/2(17) = 8.5
Side opposite 60 =

(side opposite 30) ⇒

= 14.72 when rounded 2 decimal places