Answer:
I do not know
Step-by-step explanation:
if you are considering banning me plz do
We have to calculate the fourth roots of this complex number:
![z=9+9\sqrt[]{3}i](https://tex.z-dn.net/?f=z%3D9%2B9%5Csqrt%5B%5D%7B3%7Di)
We start by writing this number in exponential form:
![\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20r%3D%5Csqrt%5B%5D%7B9%5E2%2B%289%5Csqrt%5B%5D%7B3%7D%29%5E2%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B81%5Ccdot3%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B243%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B324%7D%20%5C%5C%20r%3D18%20%5Cend%7Bgathered%7D)
![\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}](https://tex.z-dn.net/?f=%5Ctheta%3D%5Carctan%20%28%5Cfrac%7B9%5Csqrt%5B%5D%7B3%7D%7D%7B9%7D%29%3D%5Carctan%20%28%5Csqrt%5B%5D%7B3%7D%29%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
Then, the exponential form is:

The formula for the roots of a complex number can be written (in polar form) as:

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.
To simplify the calculations, we start by calculating the fourth root of r:
![r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}](https://tex.z-dn.net/?f=r%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D18%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B18%7D)
<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>
Then, we calculate the arguments of the trigonometric functions:

We can now calculate for each value of k:
![\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D0%5Ccolon%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%20e%5E%7Bi%5Cfrac%7B%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D1%5Ccolon%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B5%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D2%5Ccolon%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B9%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D3%5Ccolon%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B13%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
Answer:
The four roots in exponential form are
z0 = 18^(1/4)*e^(i*π/8)
z1 = 18^(1/4)*e^(i*5π/8)
z2 = 18^(1/4)*e^(i*9π/8)
z3 = 18^(1/4)*e^(i*13π/8)
Answer:
The length of the line is PQ as this line is parallel to the x - axis. So, the length of the line is the summation of 10 from second quadrant and 20 from first quadrant. So, the sum is 30. Hence the length of the line is 30 units.
Step-by-step explanation:
The length of a line segment can be measured by measuring the distance between its two endpoints. It is the path between the two points with a definite length that can be measured. Explanation: On a graph, the length of a line segment can be found by using the distance formula between its endpoints.
Variable: a symbol for a number you don’t know yet
inequality: 60=22+8x