1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhannawk [14.2K]
3 years ago
12

The population of Webb County, Texas, from the year 2000 through 2010 is shown in the graph.

Mathematics
1 answer:
olga_2 [115]3 years ago
6 0

Answer:

The is answer is B. 278,500

Step-by-step explanation:

You might be interested in
Consider the following initial value problem, in which an input of large amplitude and short duration has been idealized as a de
Ganezh [65]

Answer:

a. \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

b. \mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

Step-by-step explanation:

The initial value problem is given as:

y' +y = 7+\delta (t-3) \\ \\ y(0)=0

Applying  laplace transformation on the expression y' +y = 7+\delta (t-3)

to get  L[{y+y'} ]= L[{7 + \delta (t-3)}]

l\{y' \} + L \{y\} = L \{7\} + L \{ \delta (t-3\} \\ \\ sY(s) -y(0) +Y(s) = \dfrac{7}{s}+ e ^{-3s} \\ \\ (s+1) Y(s) -0 = \dfrac{7}{s}+ e^{-3s} \\ \\ \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

Taking inverse of Laplace transformation

y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{1}{s+1}] = e^{-t}  = f(t) \ then \ by \ second \ shifting \ theorem;

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

= e^{-t-3} \left \{ {{1 \ \ \ \ \  t>3} \atop {0 \ \ \ \ \  t

= e^{-(t-3)} u (t-3)

Recall that:

y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

Then

y(t) = 7 -7e^{-t}  +e^{-(t-3)} u (t-3)

y(t) = 7 -7e^{-t}  +e^{-t} e^{-3} u (t-3)

\mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

3 0
2 years ago
Pleaseeeee hurryy need help!!
lord [1]

it is the last one

Step-by-step explanation:

by simplifying powers it becomes

8g^8/64h ^5

simplifying it further gives

g^8/ 8h^5

8 0
3 years ago
Read 2 more answers
which of the following fractions are equivalent? 3/4 and 6/7. 2/3 and 12/13. 1/9 and 4/12. 1/6 and 3/18
sertanlavr [38]

Answer:

1/6 and 3/18

Step-by-step explanation:

I used the butterfly method to compare all the fraction pairs together and then 1/6 and 3/18 were equal. Hopefully I can help you.

8 0
2 years ago
Need help !!!wuicknkkkkkkk
amm1812

Answer:

do it

Step-by-step explanation:

can determine that 8 is more than -9 by looking which one is more further to the right, since I see 8 I assume it is 8 and that would be correct

3 0
2 years ago
How to solve if 5a=6 and 7b=8, 35ab= <br> (please explain, i need explaination)
ser-zykov [4K]

Answer:

35ab = 48

Step-by-step explanation:

given

5a = 6 ( divide both sides by 5 )

a = \frac{6}{5}

and

7b = 8 ( divide both sides by 7 )

b = \frac{8}{7}

substitute these values for a and b into the expression and simplify

35ab

= 35 × \frac{6}{5} × \frac{8}{7} ( divide 35 and 5 by 5 )

= 7 × 6 × \frac{8}{7}

= 42 × \frac{8}{7} ( divide 42 and 7 by 7 )

= 6 × 8

= 48

6 0
1 year ago
Other questions:
  • A scientist is studying red maple tree growth in a state park. She measured the trunk diameters of a sample of trees in the same
    15·1 answer
  • What are the factors of the equation (y-2)(x+3)
    13·1 answer
  • 60 EXTRA POINTS!!!! I need help with writing an inequality for a graph. It is below. :)
    15·1 answer
  • Evaluate the sine, cosine, and tangent of the angle without using a calculator. θ = − 10π 3
    5·1 answer
  • a truck rental company charges $19.95 to rent a truck plus $0.24 per mile driven. Find the cost to rent a truck and drive 188 mi
    15·1 answer
  • a right triangle has legs measuring 4.5 meters and 1.5 meters the lengths of the legs of a second triangle are proportional to t
    8·2 answers
  • Pls help me solve pls show how you got the answer
    15·1 answer
  • Choose the answer that best translates the algebraic expressic<br> 6(w+2)<br> KATES MATH LESSONS
    10·1 answer
  • On a certain hot​ summer's day, 557 people used the public swimming pool. The daily prices are $1.75 for children and $2.25 for
    7·1 answer
  • Rationalize the denominator: 12/√3
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!