Answer:
1) y=1/2x+12
2)y=-2x+13
3) Parallel lines have same slope, different y intercept and perpendicular lines have opposite reciprocal slopes.
Step-by-step explanation:
the slope of the perpendicular line to the line through the two points is 0
Answer:
The parallelogram is not rectangle because the sides of the parallelogram do not meet at right angles.
Step-by-step explanation:
Given the parallelogram with sides 20 and 21 units with diagonal length 28 units.
we have to tell it is a rectangle or not.
The given parallelogram is rectangle if the angle at vertices are of 90° i.e the two triangle formed must be right angles i.e it must satisfy Pythagoras theorem
=
+
784=400+441=881
Not verified
∴ The sides of the parallelogram do not meet at right angles.
Hence, the parallelogram is not rectangle because the sides of the parallelogram do not meet at right angles.
Hope it helps
Mark as brainliest
<span>(a) This is a binomial
experiment since there are only two possible results for each data point: a flight is either on time (p = 80% = 0.8) or late (q = 1 - p = 1 - 0.8 = 0.2).
(b) Using the formula:</span><span>
P(r out of n) = (nCr)(p^r)(q^(n-r)), where n = 10 flights, r = the number of flights that arrive on time:
P(7/10) = (10C7)(0.8)^7 (0.2)^(10 - 7) = 0.2013
Therefore, there is a 0.2013 chance that exactly 7 of 10 flights will arrive on time.
(c) Fewer
than 7 flights are on time means that we must add up the probabilities for P(0/10) up to P(6/10).
Following the same formula (this can be done using a summation on a calculator, or using Excel, to make things faster):
P(0/10) + P(1/10) + ... + P(6/10) = 0.1209
This means that there is a 0.1209 chance that less than 7 flights will be on time.
(d) The probability that at least 7 flights are on time is the exact opposite of part (c), where less than 7 flights are on time. So instead of calculating each formula from scratch, we can simply subtract the answer in part (c) from 1.
1 - 0.1209 = 0.8791.
So there is a 0.8791 chance that at least 7 flights arrive on time.
(e) For this, we must add up P(5/10) + P(6/10) + P(7/10), which gives us
0.0264 + 0.0881 + 0.2013 = 0.3158, so the probability that between 5 to 7 flights arrive on time is 0.3158.
</span>
We have that the total students there are 500. The 12-graders there are 200. Probability is defined as the ratio of positive outcomes of an event, over all the possible outcomes. Suppose we pick student randomly. Then, there are 200 positive outcomes (positive outcome: we pick a student in 12th grade) and there are totally 500 outcomes (we can pick 500 students in total from Riverside High School). This ratio gives:

. The requested probability is 0.40