Answer:

Given:
Temperature, T = 3.13 K
molar mass of molecular hydrogen, m = 2.02 g/mol = 
Solution:
To calculate the root mean squarer or rms speed of hydrogen molecule, we use the given formula:

where
R = rydberg's constant = 8.314 J/mol-K
Putting the values in the above formula:


The resultant force on the object is
∑ <em>F</em> = 〈0, 8〉 N + 〈6, 0〉 N = 〈6, 8〉 N
which has a magnitude of
<em>F</em> = √((6 N)² + (8 N)²) = √(100 N²) = 10 N
By Newton's second law, the acceleration has magnitude <em>a</em> such that
<em>F</em> = <em>m a</em>
10 N = (2 kg) <em>a</em>
<em>a</em> = (10 N) / (2 kg)
<em>a</em> = 5 m/s²
so the answer is B.
I believe the answer is C- payload
Answer:
Increasing the mass and decreasing the distance between the two objects.
Explanation:
An increase in mass will cause them to have a stronger pull or gravity. A decrease of distance will make it easier for the objects to fall into each other because they would be further into the other objects area of influence.
Answer:
For destructive interference phase difference is
where n∈ Whole numbers
Explanation:
For sinusoidal wave the interference affects the resultant intensity of the waves.
In the given example we have two waves interfering at a phase difference of
would lead to a constructive interference giving maximum amplitude at at the RMS value of the amplitude in resultant.
Also the effect is same as having a phase difference of
because after each 2π the waves repeat itself.
<em>In case of destructive interference the waves will be out of phase i.e. the amplitude vectors will be equally opposite in the direction at the same place on the same time as shown in figure.</em>
They have a phase difference of
or which is same as 
Generalizing to:
a phase difference of
where n∈ {W}
{W}= set of whole numbers.