Speed = distance/time
= 400/72
=5.55 m/s
Answer:
Volume of the sample: approximately
.
Average density of the sample: approximately
.
Assumption:
.
.- Volume of the cord is negligible.
Explanation:
<h3>Total volume of the sample</h3>
The size of the buoyant force is equal to
.
That's also equal to the weight (weight,
) of water that the object displaces. To find the mass of water displaced from its weight, divide weight with
.
.
Assume that the density of water is
. To the volume of water displaced from its mass, divide mass with density
.
.
Assume that the volume of the cord is negligible. Since the sample is fully-immersed in water, its volume should be the same as the volume of water it displaces.
.
<h3>Average Density of the sample</h3>
Average density is equal to mass over volume.
To find the mass of the sample from its weight, divide with
.
.
The volume of the sample is found in the previous part.
Divide mass with volume to find the average density.
.
I think the elevation of Y and Z are the following:
<span>Y=3200,
Z=2900 </span>
Assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Missing part of the question: determine the magnitude of Porsha's acceleration.
Given the data in the question;
- Mass of Porsha;

- Mass of Zorn;

- Force of Porsha push;

Magnitude of Porsha's acceleration; 
To determine the magnitude of Porsha's acceleration, we use Newton's second laws of motion:

Where m is the mass of the object and a is the acceleration.
We substitute the mass of Porsha and the force he used into the equation
Therefore, assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Learn more: brainly.com/question/25125444