Do you want it to multiply. O que ?
Notice that
(1 + <em>x</em>)(1 + <em>y</em>) = 1 + <em>x</em> + <em>y</em> + <em>x y</em>
So we can add 1 to both sides of both equations, and we use the property above to get
<em>a</em> + <em>b</em> + <em>a b</em> = 76 ==> (1 + <em>a</em>)(1 + <em>b</em>) = 77
and
<em>c</em> + <em>d</em> + <em>c d</em> = 54 ==> (1 + <em>c</em>)(1 + <em>d</em>) = 55
Now, 77 = 7*11 and 55 = 5*11, so we get
<em>a</em> + 1 = 7 ==> <em>a</em> = 6
<em>b</em> + 1 = 11 ==> <em>b</em> = 10
(or the other way around, since the given relations are symmetric)
and
<em>c</em> + 1 = 5 ==> <em>c</em> = 4
<em>d</em> + 1 = 11 ==> <em>d</em> = 10
Now substitute these values into the desired quantity:
(<em>a</em> + <em>b</em> + <em>c</em> + <em>d</em>) <em>a</em> <em>b</em> <em>c</em> <em>d</em> = 72,000
Answer:

Step-by-step explanation:
Because we are told equivalent expressions for y and z we can plug those in to 2(y+z).

Then simplify by combining like terms of the expressions. Values ending in x^2 can be combined with each other.

Now we can distribute the 2 by multiplying each value in the parentheses by 2.

Answer:
the equation is y=-x^2+2x+2
Step-by-step explanation:
the domain is all real numbers
the range is y<=3