A micrometer is 100 times smaller than a millimeter.
Answer:
a. The moment of the 4 N force is 16 N·m clockwise
b. The moment of the 6 N force is 12 N·m anticlockwise
Explanation:
In the figure, we have;
The distance from the point 'O', to the 6 N force = 2 m
The position of the 6 N force relative to the point 'O' = To the left of 'O'
The distance from the point 'O', to the 4 N force = 4 m
The position of the 4 N force relative to the point 'O' = To the right of 'O'
a. The moment of a force about a point, M = The force, F × The perpendicular distance of the force from the point
a. The moment of the 4 N force = 4 N × 4 m = 16 N·m clockwise
b. The moment of the 6 N force = 6 N × 2 m = 12 N·m anticlockwise.
Answer:
B
Explanation:
Let m be mass of the object and v be speed of object b.
Kinetic Energy of B = 1/2 mv^2
Kinetic Energy of A = 1/2 m(2v)^2
= 2 mv^2
= 4 (1/2 mv^2)
= 4 × Kinetic Energy of B
Hence Object A has four times the kinetic energy of object B (<em>A</em><em>n</em><em>s</em><em> </em><em>B</em><em>)</em>
Kinetic energy is related to an object's mass and velocity. The greater the velocity, the greater its kinetic energy will be if the mass remains constant. (so, the 10 m/s one)
Answer:
The higher the energy, the shorter the wavelength.
Explanation: