Answer:
Se the explanation below
Explanation:
We do not feel these forces of these bodies, because they are very small compared to the force of Earth's attraction. Although its mass is greater than that of a human being, its mass is not compared to the Earth's mass. In order to understand this problem we will use numerical data and the universal gravitation formula, to give validity to the explanation.
<u>Force exerted by the Earth on a human being</u>
<u />
Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 5.97*10^24[kg]
r = distance from the center of the earth to the surface or earth radius = 6371 *10^3 [m]
<u />
Now replacing we have
<u>Force exerted by a building on a human being</u>
<u />
Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 300000 [ton] = 300 *10^6[kg]
r = distance from the building to the person = 2[m]
As we can see the force exerted by the Earth is 2000 times greater than that exerted by a building with the proposed data.
The correct answer is
<span>C) either the pressure of the gas, the volume of the gas, or both, will increase.
In fact, the ideal gas law can be written as
</span>
<span>where
p is the gas pressure
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
We can see that if the temperature T increases, then the term on the right in the equation increases, therefore the term on the left should increase as well. In order for this to be possible, at least one between p and V should increase, or also both of them. Therefore, the correct answer is C.</span>
-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.
Abyssal plain
Abyssal fan
Archipelago
Atoll
Arch
Answer:
Diameter will be 351.42 mm
Explanation:
We have given current flowing in the copper wire i = 310 A
Voltage drop across the wire V = 0.55 volt
We know that resistance is given by
Length of the copper wire l = 1 m
Resisitivity of the copper wire
We know that resistance
As area
So diameter = 351.42 mm