You said that she's losing 1.9 m/s of her speed every second.
So it'll take
(6 m/s) / (1.9 m/s²) = 3.158 seconds (rounded)
to lose all of her initial speed, and stop.
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
A 'displacement' always consists of a magnitude and a direction. The two cars you just described have displacements with the same magnitude ... 5 km. But if they didn't both drive in the same direction, then their displacements are different.
Remember:
-- 10 m/s² up and 10 m/s² down are different accelerations
-- 30 mph East and 30 mph West are the same speed but different velocity.
-- 5 km North and 5 km South are the same distance but different displacement.
Answer:
The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.
Explanation:
Force is any cause capable of modifying the state of motion or rest of a body or of producing a deformation in it. Any force can be decomposed into two vectors, so that the sum of both vectors matches the vector before decomposing. The decomposition of a force into its components can be done in any direction.
Taking into account the simple trigonometric relations, such as sine, cosine and tangent, the value of their components and the value of the angle of application, then the parallel and perpendicular components will be:
- Fparallel = F*sinα =300 N*sin 67.8° =300 N*0.926⇒ Fparallel =277.8 N
- Fperpendicular = F*cosα = 300 N*cos 67.8° = 300 N*0.378 ⇒ Fperpendicular= 113.4 N
<u><em>The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.</em></u>