a)
→ 
b)
→ 
<h3>
What are half-reactions?</h3>
The half-reaction method is a way to balance redox reactions. It involves breaking the overall equation down into an oxidation part and a reduction part.
a)
→ 

= 
= -0.83 - (-2.71) =1.88V
b)
→ 
= 
=-0. - (0.8) =-0.8V
Learn more about the half-reactions here:
https://brainly.in/question/18053421
#SPJ1
Answer:
Na₂CO₃.2H₂O
Explanation:
For the hydrated compound, let us denote is by Na₂CO₃.xH₂O
The unknown is the value of x which is the amount of water of crystallisation.
Given values:
Starting mass of hydrate i.e Na₂CO₃.xH₂O = 4.31g
Mass after heating (Na₂CO₃) = 3.22g
Mass of the water of crystallisation = (4.31-3.22)g = 1.09g
To determine the integer x, we find the number of moles of the anhydrous Na₂CO₃ and that of the water of crystallisation:
Number of moles = 
Molar mass of Na₂CO₃ =[(23x2) + 12 + (16x3)] = 106gmol⁻¹
Molar mass of H₂O = [(1x2) + (16)] = 18gmol⁻¹
Number of moles of Na₂CO₃ =
= 0.03mole
Number of moles of H₂O =
= 0.06mole
From the obtained number of moles:
Na₂CO₃ H₂O
0.03 0.06
Simplest
Ratio 0.03/0.03 0.03/0.06
1 2
Therefore, x = 2
We can calculate for temperature by assuming the equation
for ideal gas law:
P V = n R T
Where,
P = pressure = 1.80 atm
V = volume = 18.2 L
n = number of moles = 1.20 moles
R = gas constant = 0.08205746 L atm / mol K
Substituting to the given equation:
T = P V / n R
T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm /
mol K)
T = 332.70 K
We can convert K unit to ˚C unit by subtracting 273.15
to Kelvin, therefore
T = 59.55 ˚<span>C</span>
Answer:
Exothermic Reaction
Explanation:
Its a combustion reaction and they are always exothermic in nature.