meaning that NaI has the highest freezing point, and Co Br3 has the lowest freezing point.
Explanation:
The freezing point depression is a colligative property.
That means that it depends on the number of solute particles dissolved.
The formula to calculate the freezing point depression of a solution of a non volatile solute is:
ΔTf = i * Kf * m
Where kf is a constant, m is the molality and i is the van't Hoff factor.
Molality, which is number of moles per kg of solvent, counts for the number of moles dissolved and the van't Hoff factor multipllies according for molecules that dissociate.
The higher the number of molecules that dissociate, the higher the van't Hoff, the greater the freezing point depression and the lower the freezing point.
As the question states that you assume equal concentrations (molality) and complete dissociation you just must find the number of ions generated by each solute, in this way:
NH4 I → NH4(+) + I(-) => 2 ions
Co Br3 → Co(+) + 3 Br(-) => 4 ions
Na2SO4 → 2Na(+) + SO4(2-) => 3 ions.
So, Co Br3 is the solute that generate more particles and that solution will exhibit the lowest freezing point among the options given, Na2SO4 is next and the NaI is the third. Ordering the freezing point from higher to lower the rank is NaI > Na2SO4 > CoBr3, which is the answer given.
Kinetic energy is the energy possessed by an object due to its motion. If an object is moving, then it has kinetic energy. If an object has kinetic energy, then it is moving. Many students confuse kinetic energy with potential energy.
In this case, we have a dilution problem. We have to remember that in the dilution procedure we go from a solution with higher concentration to a solution with lesser concentration. Therefore we have to start with the dilution equation: