Answer:
(b) that is hydrophobic
Explanation:
e.g, alanine
Cause, Alanine possess hydrophobic side chain and the most appropriate answer is (d) part......
Alanine is an aliphatic amino acid, because the side-chain connected to the α-carbon atom is a methyl group (-CH3), alanine is the simplest α-amino acid after glycine. The methyl side-chain of alanine is non-reactive and is therefore hardly ever directly involved in protein function..
Hope it will help you☺☺☺☺☺
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V =
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x = 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09 x x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
<span>11.2G is the answer to this problem.
</span>
Answer:
119.5 J
Explanation:
First we <u>calculate the temperature difference</u>:
- ΔT = 100 °C - 50 °C = 50 °C
Then we can <u>calculate the heat released</u> by using the following formula:
Where q is the heat, Cp is the specific heat, ΔT is the temperature difference and m is the mass.
We <u>input the data</u>:
- q = 0.239 J/g°C * 50 °C * 10.0 g
Answer:
Gram
Explanation:
The SI unit of mass is grams.
Mass is the measure of matter contained in a substance. It is usually determined by weighing an amount of substance on a balance or scale.
- Mass is a fundamental quantity
- So, the unit of mass is grams.
- Ounce and pounds are other units but not the standard one.
- Newton is the unit of force and weight.