Answer:

Explanation:
Hello there!
In this case, given the Henderson-Hasselbach equation, it is possible for us to compute the pH by firstly computing the concentration of the acid and the conjugate base; for this purpose we assume that the volume of the total solution is 0.025 L and the molar mass of the sodium base is 234 - 1 + 23 = 256 g/mol as one H is replaced by the Na:

And the concentrations are:
![[acid]=0.000855mol/0.025L=0.0342M](https://tex.z-dn.net/?f=%5Bacid%5D%3D0.000855mol%2F0.025L%3D0.0342M)
![[base]=0.000781mol/0.025L=0.0312M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.000781mol%2F0.025L%3D0.0312M)
Then, considering that the Ka of this acid is 2.5x10⁻⁵, we obtain for the pH:

Best regards!
Answer:
for the reaction is 18.05
Explanation:
Equilibrium constant in terms of partial pressure (
) for this reaction can be written as-

where
and
are equilibrium partial pressure of
and
respectively
Hence
= 18.05
So,
for the reaction is 18.05
The answers here is B) Before, the substance was a gas, later it was a liquid.
Gas particles move freely and away from each other. However, liquid particles move around each other.
Hope this helps! :)(
Answer:
is any thing which has mass volume and empty space
The most likely answer is the boiling point and freezing point of water. The Celsius scale starts at the freezing point of water (0°C) and than scaled so that 100°C fell on the boiling point of water.
I hope this helps. Let me know if anything is unclear.