1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
11

Helphelphelphelphelphelphelphelphelphelphelp

Mathematics
1 answer:
Komok [63]3 years ago
5 0

Answer:

Answer is the D option: 42m+12

You might be interested in
What is the difference between NMI and duiscretionary income
Temka [501]
Well discretionary income includes money spent on luxury items vacations and non essential goods and services the other i believe stands for nuveen municipal income which is stock right we need more info hope this helps a lil
5 0
3 years ago
Natasha earns $4.30walking a dog fridaynight. How does $4.30relate to the decimal number 4.3?
Snowcat [4.5K]
Umm......


It is the same value.
3 0
3 years ago
Read 2 more answers
In the following chemical equation, the atomic inventory for which element has been done incorrectly? 2KClO3 2KCl + 3O2 reactant
Maurinko [17]
Chlorine, on the keft side, the chlorine equals 6 on the right only 2
6 0
3 years ago
Read 2 more answers
How do you write in slope intercept form
skelet666 [1.2K]
You write y=mx+b
m= slope
x=variable
b= y-intercept
5 0
4 years ago
Find the area of the surface generated by revolving the curve xequals=StartFraction e Superscript y Baseline plus e Superscript
artcher [175]

Solution :

$x=f(y) = \frac{e^y + e^{-y}}{2} , \ \ \ \ \ 0 \leq y \leq \ln 2$

$\frac{dx}{dy} = \frac{e^y + e^{-y}}{2}$

$\left(\frac{dx}{dy}\right)^2 = \frac{e^{2y} - 2 + e^{-2y}}{4}$

$1+\left(\frac{dx}{dy}\right)^2 = 1+\frac{e^{2y} - 2 + e^{-2y}}{4} = \frac{e^{2y} + 2 + e^{-2y}}{4}$

                  $ = \left(\frac{e^y + e^{-y}}{2}\right)^2$

$\sqrt{1+\left(\frac{dx}{dy}\right)^2} = \sqrt{\left(\frac{e^y + e^{-y}}{2}\right)^2}=\frac{e^y + e^{-y}}{2}$

$S = \int_{y=a}^b 2 \pix \sqrt{1+\left(\frac{dx}{dy}\right)^2 } \ dy$

  $=\int_{0}^{\ln2} 2 \pi \left(\frac{e^y+e^{-y}}{2}\right) \left(\frac{e^y+e^{-y}}{2}\right) \ dy$

  $=\frac{\pi}{2}\int_{0}^{\ln 2}(e^y+e^{-y})^2 \ dy = \frac{\pi}{2}\int_{0}^{\ln 2}(e^{2y}+e^{-2y}+2) \ dy $

  $=\frac{\pi}{2} \left[ \frac{e^{2y}}{2} + \frac{e^{-2y}}{-2} + 2y \right]_2^{\ln 2}$

  $=\frac{\pi}{2} \left[ \left(\frac{e^{2 \ln 2}}{2} + \frac{e^{-2\ln2}}{-2} + 2 \ln2 \right) - \left( \frac{e^0}{2} + \frac{e^0}{-2}+0\right) \right]$

  $=\frac{\pi}{2}\left[ \frac{e^{\ln4}}{2} - \frac{e^{\ln(1/4)}}{2} + \ln 4 - \left( \frac{1}{2} - \frac{1}{2} + 0 \right) \right]$

  $=\frac{\pi}{2} \left[\frac{4}{2} -\frac{1/4}{2} + \ln 4 \right]$

  $=\frac{\pi}{2} \left[ 2-\frac{1}{8} + \ln 4 \right]$

  $=\left( \frac{15}{8} + \ln 4 \right) \frac{\pi}{2}$

Therefore, $S = \frac{15}{16} \pi + \pi \ln 2$

 

3 0
3 years ago
Other questions:
  • In a tyre store on saturday morning, 14 vehicles came in changed all 38 of their tyres. Some were motorbikes and some were cars.
    8·1 answer
  • 345x75? Of points Aaron got
    10·1 answer
  • Which letter do not exhibit reflection symmetry
    10·1 answer
  • (20 points) please give me motivation to study and study tips or test taking tips for finals. it would be greatly appreciated.
    8·1 answer
  • The figure above shows a right-angled triangle OAB. AOC is a minor sector enclosed in the triangle. If OA = 7 cm, AB = 6 cm, cal
    5·1 answer
  • Domain and range? Checking my work<br> My answer:<br> D:[-7,-1]<br> R:[-6,-3]
    5·1 answer
  • Please please I need help with this no links
    6·1 answer
  • State the commutative property of addition using the variables and
    12·1 answer
  • Evaluate 40 divided by 8 plus 3 multiplied by 4 multiplied bye 2
    11·2 answers
  • You cut out a piece of me, and now I bleed internally
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!