Answer:
Explanation:
Given the following data;
Mass of child = 23 kg
Mass of bike = 5.5 kg
Velocity = 4.5 m/s
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
To find the momentum of each of them;
I. Momentum of the child
Momentum C = mass * velocity
Momentum C = 23 * 4.5
Momentum C = 103.5 Kgm/s
II. Momentum of the bike
Momentum B = mass * velocity
Momentum B = 5.5 * 4.5
Momentum B = 24.75 Kgm/s
Hence, we can deduce from the calculations that the momentum of the child is greater than that of the bike because of the higher mass possessed by the child.
Complete Question
The complete question is shown on the uploaded image
Answer:
The tension on the shank is 
Explanation:
From the question we are told that
The strain on the strain on the head is 
The contact area is
Looking at the first diagram
At 600 MPa of stress
The strain is 
At 450 MPa of stress
The strain is 
To find the stress at
we use the interpolation method

Substituting values



Generally the force on each head is mathematically represented as

Substituting values


Now the tension on the bolt shank is as a result of the force on the 6 head which is mathematically evaluated as



The buoyant force must be greater than water.
Answer:
M_c = 100.8 Nm
Explanation:
Given:
F_a = 2.5 KN
Find:
Determine the moment of this force about C for the two cases shown.
Solution:
- Draw horizontal and vertical vectors at point A.
- Take moments about point C as follows:
M_c = F_a*( 42 / 150 ) *144
M_c = 2.5*( 42 / 150 ) *144
M_c = 100.8 Nm
- We see that the vertical component of force at point A passes through C.
Hence, its moment about C is zero.
Answer:
Red light
Explanation:
This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)