To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
A high electromagnetic wave has short, very fast, frequent waves.
a low electromagnetic wave has long, very slow, infrequent waves.
hope this helps! pls mark brainliest!
Pitch is the impression the listener gets of the <em>frequency</em> of the sound.
The speed of the sound is <em>not</em> related to its pitch/frequency.
If the speed and frequency were related, that would be a real problem. Bands, orchestras, and choirs could not exist ! All the instruments in the orchestra could play a note together, at the same time. But then the higher instruments ... the flute, trumpet, violins, high guitar strings and high piano keys ... would travel to you fast, and the lower instruments ... the trombone, tuba, double bass, bass drum, low guitar strings and the low piano keys ... would travel to you slow. They all played the note at the same time, but by the time you heard it, it would be all smeared out ... every instrument arriving at your ear at a different time !
You would have to pick the word c because that is the answer
Answer:
E = 420.9 N/C
Explanation:
According to the given condition:

where,
E = Magnitude of Electric Field = ?
v = speed of charge = 230 m/s
B = Magnitude of Magnetic Field = 0.61 T
θ = Angle between speed and magnetic field = 90°
Therefore,

<u>E = 420.9 N/C</u>