The concentration of [H3O+] will be 6.3 x
M
<h3>pH</h3>
Mathematically, pH = -log [H+] or -log [H3O+]
With a pH of 13.2:
-log [H3O+] = 13.2
log [H3O+] = -13.2
[H3O+] = 6.3 x
M
More on pH can be found here: brainly.com/question/491373
#SPJ1
Explanation:
<em><u>in fact , we can use newtons second law of motion (see the SPT: Force topic) to calculate the acceleration in each of these cases</u></em>
<em><u>in fact , we can use newtons second law of motion (see the SPT: Force topic) to calculate the acceleration in each of these caseshope it helps you like me plz</u></em>
Answer:
Explanation:
When you start to feel you are desiring more than just a casual friendship with your best friend and you’re not sure what to do next, let me offer you some advice that could strengthen both your relationship and your love for each other.
First, don’t rush into a romantic relationship with your best friend…many times people confuse love with that other kind of caring love you feel for all of your other friends.
Second, don’t spill your guts right away. You might feel like you have to share all your thoughts and feelings with the other person as soon as you start to feel something. That’s usually a mistake.
Answer:
1) <em>The correct answer is A. Collision</em>
2) A hot solvent helps a solid dissolve faster because an increase in <u><em>kinetic energy</em></u> that also increases the rate of collisions
Explanation:
When a solute is added into a solvent and stirred, the solute particles get distributed to all parts of the solvent as a result of stirring.
More collisions occur between the solute and the solvent due to stirring. This increases the rate of dissolving.
<em>When a solvent is heated, then the kinetic energy would increase and the atoms will collide with a much greater force. As a result, ore solute will be able to dissolve in the solvent. </em>
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>