Answer:
x = - 4 y = - 4
Step-by-step explanation:
x+y= - 8
-9x-6y=60
First, solve for x in the first equation:
x+y = - 8 Subtract y from both sides
x + y - y = -8 - y y cancels on the left
x = - 8 - y
Now plug in what you found for x into the 2nd equation and solve for y.
- 9x - 6y = 60
-9(- 8 - y) - 6y = 60 Multiply out
72 + 9y - 6y = 60
72 + 3y = 60 Subtract 72 from both sides
72 - 72 + 3y = 60 - 72 72 cancels on the left
3y = - 12 Divie both sides by 3
3y/3 = -12/3 3 cancels on the left because 3/3 = 1
y = -4
Now plug your answer for y back into the first equation to get x.
x + y = -8
x + (-4) = - 8 Add 4 to each side
x - 4 + 4 = - 8 + 4 4 cancels on the left
x = -4
x = - 4 and y = - 4
Answer:
Let x = the charge in 1st city before taxes
Let y = the charge in 2nd city before taxes
Set up equation before taxes.
y = x - 1500 eq1
Set up equation for total tax paid.
0.065x + 0.06y = 378.75 eq2
Substitute eq1 into eq2.
0.065x + 0.06(x - 1500) = 378.75
0.065x + 0.06x - 90 = 378.75
0.125x - 90 = 378.75
0.125x = 468.75
x = 3750
Substitute this value of x into eq1.
y = 3750 - 1500
y = 2250
The hotel charge in city one is $3750 and the hotel charge in city two is $2250
128 = a + + 4(a + 10) + (a + 10)
128 = a + 4a + 40 + a + 10
128 = 6a + 50
128-50 = 6a
78 = 6a
13 = a
1st = a = 13
2nd = 4(a + 10) = 4(23) = 92
3rd = a + 10 = 23
Very simple.
Let's say you have an equation.
f(x) = x^2
You are asked to find the value for y when x equals 1.
The new equation is: f(1) = (1)^2
f(1) = 1
When x = 1, y = 1.
The same concept is applied here.
In the graph, where does x equal 0?
It equals zero at the origin.
Is there any y-value associated with 0?
Yes, there is.
Y equals five when x equals 0.
So
h(0) = 5
Answer:
yea you got it right its c
Step-by-step explanation: