the answer is the first one A
Answer: 8x³ + 12x² - 16x - 16
<u>Step-by-step explanation:</u>
(4x² - 2x - 4)(2x + 4)
= (2x + 4)(4x² - 2x - 4)
= 2x(4x² - 2x - 4) + 4(4x² - 2x - 4)
= 8x³ - 4x² - 8x + 16x² - 8x - 16
= 8x³ + (-4x² + 16x²) + (-8x - 8x) - 16
= 8x³ + 12x² - 16x - 16
Answer:
TT➪T
Step-by-step explanation:
Answer:
Q1) (x+7)² = 9
x = -10, -4
Q2) (x-8)² = 144
x = -4, 20
Q3) (x-1)² = 81
x = -8, 10
Step-by-step explanation:
Q1) x² + 14x + 49 = 9
x² + 2(x)(7) + 7² = 9
(x + 7)² = 9
x + 7 = +/- sqrt(9)
x + 7 = 3
x = -4
x + 7 = -3
x = -10
Q2) x² - 16x + 64 = 144
x² - 2(x)(8) + 8² = 144
(x - 8)² = 144
x - 8 = +/- sqrt(144)
x - 8 = 12
x = 20
x - 8 = -12
x = -4
Q3) x² - 2x + 1 = 81
x² - 2(x)(1) + 1² = 81
(x - 1)² = 81
x - 1 =+/- sqrt(81)
x - 1 = 9
x = 10
x - 1 = -9
x = -8
So, I came up with something like this. I didn't find the final equation algebraically, but simply "figured it out". And I'm not sure how much "correct" this solution is, but it seems to work.
![f(x)=\sin(\omega(x))\\\\f(\pi^n)=\sin(\omega(\pi^n))=0, n\in\mathbb{N}\\\\\\\sin x=0 \implies x=k\pi,k\in\mathbb{Z}\\\Downarrow\\\omega(\pi^n)=k\pi\\\\\boxed{\omega(x)=k\sqrt[\log_{\pi} x]{x},k\in\mathbb{Z}}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csin%28%5Comega%28x%29%29%5C%5C%5C%5Cf%28%5Cpi%5En%29%3D%5Csin%28%5Comega%28%5Cpi%5En%29%29%3D0%2C%20n%5Cin%5Cmathbb%7BN%7D%5C%5C%5C%5C%5C%5C%5Csin%20x%3D0%20%5Cimplies%20x%3Dk%5Cpi%2Ck%5Cin%5Cmathbb%7BZ%7D%5C%5C%5CDownarrow%5C%5C%5Comega%28%5Cpi%5En%29%3Dk%5Cpi%5C%5C%5C%5C%5Cboxed%7B%5Comega%28x%29%3Dk%5Csqrt%5B%5Clog_%7B%5Cpi%7D%20x%5D%7Bx%7D%2Ck%5Cin%5Cmathbb%7BZ%7D%7D)