9.9%
|Approximate Value − Exact Value| divided by
|Exact Value| X 100
Answer:
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)
Explanation:
According to Brönsted-Lowry acid-base theory, an acid is a substance that donates H⁺. Let's consider the molecular equation showing that benzoic acid is a Brönsted-Lowry acid.
C₆H₅COOH(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The complete ionic equation includes all the ions and molecular species.
C₆H₅COO⁻(aq) + H⁺(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)
<span>Day and night are not exactly of equal length at the time of the March and September equinoxes. The dates on which day and night are each 12 hours occur a few days before and after the equinoxes.</span>
Use PV = mRT/M and solve for R. R = PVM/RT. Since you have the same gas under two sets of conditions then you can write
<span>P1V1M1/m1T1 = P2V2M2/m2T2 </span>
<span>Since P, M and T are constant, the equation becomes </span>
<span>V1/m1 = V2/m2 </span>
<span>Now plug in your values and solve for V2</span>
The answer is HCl, C3H6 and C2H5OH. Hydrochloric acid has the lowest boiling point among the three choices since it only has weak dipole-dipole and Van der Waal's forces between molecules which are much weaker than the forces of attraction present in propane and ethanol. Ethanol has the highest since the hydrogen bonding present in ethanol make it hard to break the bonds.