Answer:
E 1: cyclohexene
Explanation:
This reaction is an example of the dehydration of cyclic alcohols. The reaction proceeds in the following steps;
1) The first step of the process is the protonation of the cyclohexanol by the acid. This now yields H2O^+ attached to the cyclohexane ring.
2) the water molecule, which a good leaving group now leaves yielding a carbocation. This now leaves a cyclohexane carbocation which is highly reactive.
3) A water molecule now abstracts a proton from the carbon adjacent to the carbocation leading to the formation of cyclohexene and the regeneration of the acid catalyst. This is an E1 mechanism because it proceeds via a carbocation intermediate and not a concerted transition state, hence the answer.
Answer:
case1.
The addition of acid and base leads to a change in pH of the water when adding to deionized water due to fact that acid and bases dissociated in dissolving in water. If the H+ ion increases in the water as acid addition hikes it, it will result in decreasing the pH value. The intensity of the acid also affects the dissociation of the ions.
case2
Buffers are normally formed by weak acid and its conjugate base, and adding acid to the buffer it absorbs the H+ ions so the pH will be lower and adding base or increase of OH- conjugate base resists the pH value to increase.
Thw answer is PHj78 JJ CP30 R2D2
Answer:
Tetrahedral, trigonal pyramidal, trigonal bipyramidal.
Explanation:
The VSPER theory states that the bonds of sharing electrons and the lone pairs of electrons will repulse as much as possible. So, by the repulsion, the molecule will have some shape.
In the ion PO₄³⁻, the central atom P has 5 electrons in its valence shell, so it needs 3 electrons to be stable. Oxygen has 6 electrons at the valence shell and needs 2 to be stable. 3 oxygens share 1 pair of electrons with P, and the two lone pair remaining in P is shared with the other O, then the central atom makes 4 bonds and has no lone pairs, the shape is tetrahedral.
In the ion H₃O⁺, the central atom O has 6 electrons in its valence shell and needs 2 electrons to be stable. The hydrogen has 1 electron, and need 1 more to be stable. The hydrogens share 1 pair of electrons with the oxygen, then it remains 3 electrons at the central atom, and the VSPER theory states that the shape will be a trigonal pyramidal.
In the AsF₅, the central atom As has 5 valence electrons, and F has 1 electron in its valence shell, so each F shares one pair of electrons with As, and there are no lone pairs in the central atom. For 5 bonds without lone pairs, the shape is trigonal bipyramidal.
The products of this reaction between aluminum and sulfuric acid are two: hydrogen and aluminum sulfate.
<h3>What are the products in a reaction?</h3>
This concept refers to the substances obtained at the end of the reaction.
<h3>What does it mean to balance an equation?</h3>
It means to make sure there are the same molecules in the reactants and products.
<h3>What are the products in this reaction?</h3>
- Al + H2SO4 = Al2 (SO4)3 + H2
- Al2 (SO4)3 = Aluminium sulfate
- H = Hydrogen
<h3>What is the balanced equation?</h3>
2Al + 3H2SO4 = Al2 (SO4)3 + 3H2
Learn more about chemical reaction in: brainly.com/question/3461108